Skip to main content

Genesis

  • Chapter
  • First Online:
Central Pain Syndrome

Abstract

The anatomophysiological “engine” of CP is a focal, self-sustaining, reverberating loop between the sensory cortex and the sensory thalamus (Dynamic Reverberation, DR) ([1], Figs. 8.1 and 8.2), following the establishment of an intracortical S1 attractor state (locked S1) (e.g., layer 4⇒ (layer 2/3⇒) layer 5⇒ layer 6⇒ layer 4+corticothalamic outflow). The attendant sensory information decorrelation translates into different sensory percepts (pain, dysesthesias, paresthesias, pruritus).

New scientific ideas never spring from a communal body, however organized, but rather from the head of an individually inspired researcher who struggles with his problems in lonely thought and unites all his thought on one single point which is his whole world for the moment.

Max Planck

(25th anniversary of the Kaiser-Wilhelm Gesellschaft, January 1936)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Canavero S. Dynamic reverberation. A unified mechanism for central and phantom pain. Med Hypotheses. 1994;42(3):203–7.

    Article  CAS  PubMed  Google Scholar 

  2. Riddoch G, Critchley M. La physiopathologie de la douleur d’origine centrale. Rev Neurol (Paris). 1937;68:77–104.

    Google Scholar 

  3. Canavero S. Bilateral central pain. Acta Neurol Belg. 1996;96(2):135–6.

    CAS  PubMed  Google Scholar 

  4. Kim JS. Delayed-onset ipsilateral sensory symptoms in patients with central poststroke pain. Eur Neurol. 1998;40(4):201–6.

    Article  CAS  PubMed  Google Scholar 

  5. Gorecki J, Hirayama T, Dostrovsky JO, Tasker RR, Lenz FA. Thalamic stimulation and recording in patients with deafferentation and central pain. Stereotact Funct Neurosurg. 1989;52(2–4):219–26.

    Article  CAS  PubMed  Google Scholar 

  6. Kim JS. Aggravation of poststroke sensory symptoms after a second stroke on the opposite side. Eur Neurol. 1999;42(4):200–4.

    Article  CAS  PubMed  Google Scholar 

  7. Helmchen C, Lindig M, Petersen D, Tronnier V. Disappearance of central thalamic pain syndrome after contralateral parietal lobe lesion: implications for therapeutic brain stimulation. Pain. 2002;98(3):325–30.

    Article  CAS  PubMed  Google Scholar 

  8. Daniele O, Fierro B, Brighina F, Magaudda A, Natalè E. Disappearance of haemorrhagic stroke-induced thalamic (central) pain following a further (contralateral ischaemic) stroke. Funct Neurol. 2003;18(2):95–6.

    PubMed  Google Scholar 

  9. Cordery RJ, Rossor MN. Bilateral thalamic pain secondary to bilateral thalamic infarcts relieved by a further unilateral ischaemic episode. Eur J Neurol. 1999;6(6):717–9.

    Article  CAS  PubMed  Google Scholar 

  10. Parrent AG, Lozano AM, Dostrovsky JO, Tasker RR. Central pain in the absence of functional sensory thalamus. Stereotact Funct Neurosurg. 1992;59:9–14.

    Article  CAS  PubMed  Google Scholar 

  11. Greenspan JD, Ohara S, Sarlani E, Lenz FA. Allodynia in patients with post-stroke central pain (CPSP) studied by statistical quantitative sensory testing within individuals. Pain. 2004;109(3):357–66.

    Article  CAS  PubMed  Google Scholar 

  12. Kim JH, Greenspan JD, Coghill RC, Ohara S, Lenz FA. Lesions limited to the human thalamic principal somatosensory nucleus (ventral caudal) are associated with loss of cold sensations and central pain. J Neurosci. 2007;27(18):4995–500.

    Article  CAS  PubMed  Google Scholar 

  13. Berić A, Dimitrijević MR, Lindblom U. Central dysesthesia syndrome in spinal cord injury patients. Pain. 1988;34(2):109–16.

    Article  PubMed  Google Scholar 

  14. Boivie J, Leijon G, Johansson I. Central post-stroke pain—a study of the mechanisms through analyses of the sensory abnormalities. Pain. 1989;37(2):173–85.

    Article  CAS  PubMed  Google Scholar 

  15. Vestergaard K, Nielsen J, Andersen G, Ingeman-Nielsen M, Arendt-Nielsen L, Jensen TS. Sensory abnormalities in consecutive, unselected patients with central post-stroke pain. Pain. 1995;61(2):177–86.

    Article  CAS  PubMed  Google Scholar 

  16. Casey KL, Geisser M, Lorenz J, Morrow TJ, Paulson P, Minoshima S. Psychophysical and cerebral responses to heat stimulation in patients with central pain, painless central sensory loss, and in healthy persons. Pain. 2012;153(2):331–41.

    Article  PubMed  Google Scholar 

  17. Krause T, Asseyer S, Taskin B, Flöel A, Witte AV, Mueller K, Fiebach JB, Villringer K, Villringer A, Jungehulsing GJ. The cortical signature of central poststroke pain: gray matter decreases in somatosensory, insular, and prefrontal cortices. Cereb Cortex. 2016;26(1):80–8.

    Article  CAS  PubMed  Google Scholar 

  18. Franzini A, Ferroli P, Dones I, Marras C, Broggi G. Chronic motor cortex stimulation for movement disorders: a promising perspective. Neurol Res. 2003;25(2):123–6.

    Article  PubMed  Google Scholar 

  19. Canavero S, Ren X, Kim CY, Rosati E. Neurologic foundations of spinal cord fusion (GEMINI). Surgery. 2016;160(1):11–9.

    Article  PubMed  Google Scholar 

  20. Prescott SA, Rattè S. Pain processing by spinal microcircuits: afferent combinatorics. Curr Op Neurobiol. 2012;22:631–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nash P, Wiley K, Brown J, Shinaman R, Ludlow D, Sawyer AM, Glover G, Mackey S. Functional magnetic resonance imaging identifies somatotopic organization of nociception in the human spinal cord. Pain. 2013;154(6):776–81.

    Article  PubMed  Google Scholar 

  22. Awad AJ, Forbes JA, Jermakowicz W, Eli IM, Blumenkopf B, Konrad P. Experience with 25 years of dorsal root entry zone lesioning at a single institution. Surg Neurol Int. 2013;4:64.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Edgar RE, Best LG, Quail PA, Obert AD. Computer-assisted DREZ microcoagulation: posttraumatic spinal deafferentation pain. J Spinal Disord. 1993;6(1):48–56.

    Article  CAS  PubMed  Google Scholar 

  24. Falci S, Best L, Bayles R, Lammertse D, Starnes C. Dorsal root entry zone microcoagulation for spinal cord injury-related central pain: operative intramedullary electrophysiological guidance and clinical outcome. J Neurosurg. 2002;97(2 Suppl):193–200.

    PubMed  Google Scholar 

  25. Gybels JM, Sweet WH. Neurosurgical treatment of persistent pain. Physiological and pathological mechanisms of human pain. Pain Headache. 1989;11:1–402.

    CAS  PubMed  Google Scholar 

  26. King RB. Anterior commissurotomy for intractable pain. J Neurosurg. 1977;47(1):7–11.

    Article  CAS  PubMed  Google Scholar 

  27. Bassetti C, Bogousslavsky J, Mattle H, Bernasconi A. Medial medullary stroke: report of seven patients and review of the literature. Neurology. 1997;48(4):882–90.

    Article  CAS  PubMed  Google Scholar 

  28. Rousseaux M, Cassim F, Bayle B, Laureau E. Analysis of the perception of and reactivity to pain and heat in patients with Wallenberg syndrome and severe spinothalamic tract dysfunction. Stroke. 1999;30(10):2223–9.

    Article  CAS  PubMed  Google Scholar 

  29. Amano K, Iseki H, Notani M, Kawabatake H, Tanikawa T, Kawamura H, Kitamura K. Rostral mesencephalic reticulotomy for pain relief. Report of 15 cases. Acta Neurochir Suppl (Wien). 1980;30:391–3.

    Article  CAS  Google Scholar 

  30. Amano K, Kawamura H, Tanikawa T, Kawabatake H, Iseki H, Taira T. Stereotactic mesencephalotomy for pain relief. A plea for stereotactic surgery. Stereotact Funct Neurosurg. 1992;59(1–4):25–32.

    Article  CAS  PubMed  Google Scholar 

  31. Shieff C, Nashold BS Jr. Thalamic pain and stereotactic mesencephalotomy. Acta Neurochir Suppl (Wien). 1988;42:239–42.

    CAS  Google Scholar 

  32. Kim JS. Medial medullary infarct aggravates central poststroke pain caused by previous lateral medullary infarct. Eur Neurol. 2007;58(1):41–3.

    Article  PubMed  Google Scholar 

  33. Tasker RR. Central pain states. In: Loeser JD, editor. Bonica’s management of pain. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2001.

    Google Scholar 

  34. Canavero S, Bonicalzi V. Central pain syndrome: pathophysiology, diagnosis and management. Cambridge: Cambridge University Press; 2007.

    Book  Google Scholar 

  35. Canavero S, Bonicalzi V. Central pain syndrome: pathophysiology, diagnosis and management. 2nd ed. Cambridge: Cambridge University Press; 2011.

    Book  Google Scholar 

  36. Collins R, O’Hanlon E, O’Neill D. Therapeutic stroke: resolution of central post-stroke pain after a second stroke. J Am Geriatr Soc. 1997;45(4):532.

    Article  CAS  PubMed  Google Scholar 

  37. Lopez JA, Torres LM, Gala F, Iglesias I. Spinal cord stimulation and thalamic pain: long-term results of eight cases. Neuromodulation. 2009;12:240–3.

    Article  PubMed  Google Scholar 

  38. Chung CS, Caplan LR, Han W, Pessin MS, Lee KH, Kim JM. Thalamic haemorrhage. Brain. 1996;119(Pt 6):1873–86.

    Article  PubMed  Google Scholar 

  39. Ohye C. Stereotactic treatment of central pain. Stereotact Funct Neurosurg. 1998;70(2–4):71–6.

    Article  CAS  PubMed  Google Scholar 

  40. Hassler R, Riechert T. Klinische und anatomische Befunde bei sterotaktischen Schmerz-operationen im Thalamus. Archiv für Psychiatrie und Zeitschrift f d ges Neurologie. 1959;200:93–122.

    CAS  Google Scholar 

  41. Levin G. Electrical stimulation of the globus pallidus and thalamus. J Neurosurg. 1966;24(Suppl. 10):415–21.

    Google Scholar 

  42. Koszewski W, Jarosz J, Pernak-De Gast J. Stereotactic posterior capsulo-lentiform deafferentation as an effective treatment in central post-stroke pain. A new surgical method for intractable central pain control? Pain Clinic. 2003;15:115–23.

    Article  Google Scholar 

  43. Dierssen G, Odoriz B, Hernando C. Sensory and motor responses to stimulation of the posterior cingulate cortex in man. J Neurosurg. 1969;31(4):435–40.

    Article  CAS  PubMed  Google Scholar 

  44. Hamby WB. Reversible central pain. Arch Neurol. 1961;5:528–32.

    Article  CAS  PubMed  Google Scholar 

  45. Fukaya C, Katayama Y, Yamamoto T, Kobayashi K, Kasai M, Oshima H. Motor cortex stimulation in patients with post-stroke pain: conscious somatosensory response and pain control. Neurol Res. 2003;25(2):153–6.

    Article  PubMed  Google Scholar 

  46. Chalah MA, Ayache SS, Riachi N, Ahdab R. Permanent reversal of essential tremor following a frontal lobe stroke. J Neurol Sci. 2015;354(1–2):133–4.

    Article  PubMed  Google Scholar 

  47. Constantino AE, Louis ED. Unilateral disappearance of essential tremor after cerebral hemispheric infarct. J Neurol. 2003;250(3):354–5.

    Article  PubMed  Google Scholar 

  48. Dupuis MJ, Evrard FL, Jacquerye PG, Picard GR, Lermen OG. Disappearance of essential tremor after stroke. Mov Disord. 2010;25(16):2884–7.

    Article  PubMed  Google Scholar 

  49. Kim JS, Park JW, Kim WJ, Kim HT, Kim YI, Lee KS. Disappearance of essential tremor after frontal cortical infarct. Mov Disord. 2006;21(8):1284–5.

    Article  PubMed  Google Scholar 

  50. Le Pira F, Giuffrida S, Panetta MR, Lo Bartolo ML, Politi G. Selective disappearance of essential tremor after ischaemic stroke. Eur J Neurol. 2004;11(6):422–3.

    Article  PubMed  Google Scholar 

  51. Mochizuki H, Ugawa Y. Disappearance of essential tremor after stroke: which fiber of cerebellar loops is involved in posterior limb of the internal capsule? Movement Dis. 2011;26:1577.

    Article  PubMed  Google Scholar 

  52. Jang SH, Seo JP. Differences of the medial lemniscus and spinothalamic tract according to the cortical termination areas: a diffusion tensor tractography study. Somatosens Mot Res. 2015;32(2):67–71.

    Article  PubMed  Google Scholar 

  53. Branco DM, Coelho TM, Branco BM, Schmidt L, Calcagnotto ME, Portuguez M, Neto EP, Paglioli E, Palmini A, Lima JV, Da Costa JC. Functional variability of the human cortical motor map: electrical stimulation findings in perirolandic epilepsy surgery. J Clin Neurophysiol. 2003;20(1):17–25.

    Article  PubMed  Google Scholar 

  54. Nii Y, Uematsu S, Lesser RP, Gordon B. Does the central sulcus divide motor and sensory functions? Cortical mapping of human hand areas as revealed by electrical stimulation through subdural grid electrodes. Neurology. 1996;46(2):360–7.

    Article  CAS  PubMed  Google Scholar 

  55. Tanriverdi T, Al-Jehani H, Poulin N, Olivier A. Functional results of electrical cortical stimulation of the lower sensory strip. J Clin Neurosci. 2009;16(9):1188–94.

    Article  PubMed  Google Scholar 

  56. An JY, Song IU, Kim SH, Kim YI, Lee KS, Kim JS. Cheiro-oral syndrome in a patient from a cortical infarction in the midfrontal gyrus. Eur Neurol. 2008;59(3–4):219–20.

    Article  PubMed  Google Scholar 

  57. Penfield W, Jasper H. Epilepsy and the functional anatomy of the human brain. 3rd ed. Little, Brown: Boston; 1954.

    Google Scholar 

  58. Lenz FA, Casey KL, Jones EG, WillisWD. The human pain system: experimental and clinical perspectives. Cambridge: Cambridge University Press; 2010.

    Book  Google Scholar 

  59. Bastuji H, Frot M, Mazza S, Perchet C, Magnin M, Garcia-Larrea L. Thalamic responses to nociceptive-specific input in humans: functional dichotomies and thalamo-cortical connectivity. Cereb Cortex. 2016;26(6):2663–76.

    Article  PubMed  Google Scholar 

  60. Krause T, Brunecker P, Pittl S, Taskin B, Laubisch D, Winter B, Lentza ME, Malzahn U, Villringer K, Villringer A, Jungehulsing GJ. Thalamic sensory strokes with and without pain: differences in lesion patterns in the ventral posterior thalamus. J Neurol Neurosurg Psychiatry. 2012;83(8):776–84.

    Article  PubMed  Google Scholar 

  61. Montes C, Magnin M, Maarrawi J, Frot M, Convers P, Mauguière F, Garcia-Larrea L. Thalamic thermo-algesic transmission: ventral posterior (VP) complex versus VMpo in the light of a thalamic infarct with central pain. Pain. 2005;113(1-2):223–32.

    Article  PubMed  Google Scholar 

  62. Canavero S, Bonicalzi V. Role of primary somatosensory cortex in the coding of pain. Pain. 2013;154(7):1156–8.

    Article  PubMed  Google Scholar 

  63. Ro T, Farnè A, Johnson RM, Wedeen V, Chu Z, Wang ZJ, Hunter JV, Beauchamp MS. Feeling sounds after a thalamic lesion. Ann Neurol. 2007;62(5):433–41.

    Google Scholar 

  64. Harris KD, Mrsic-Flogel TD. Cortical connectivity and sensory coding. Nature. 2013;503:51–8.

    Article  CAS  PubMed  Google Scholar 

  65. Kubota Y, Karube F, Nomura M, Kawaguchi Y. The diversity of cortical inhibitory synapses. Front Neural Circuits. 2016;10:27.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Naka A, Adesnik H. Inhibitory circuits in cortical layer 5. Front Neural Circuits. 2016;10:35.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Tremblay R, Lee S, Rudy B. GABAergic interneurons in the neocortex: from cellular properties to circuits. Neuron. 2016;91:260–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Treveleyan AJ. Do cortical circuits need protecting from themselves? Trends Neurosci. 2016;39(8):502–11.

    Article  CAS  Google Scholar 

  69. Alitto HJ, Usrey WM. Dissecting the dynamics of corticothalamic feedback. Neuron. 2015;86:605–7.

    Article  CAS  PubMed  Google Scholar 

  70. Alonso JM, Swadlow HA. Thalamus controls recurrent cortical dynamics. Nat Neurosci. 2015;18:1703–4.

    Article  CAS  PubMed  Google Scholar 

  71. Dhruv NT. Rethinking canonical cortical circuits. Nat Neurosci. 2015;18(11):1538.

    Article  CAS  PubMed  Google Scholar 

  72. Harris KD. Top-down control of cortical state. Neuron. 2013;79:408–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Brown RE, McKenna JT. Turning a negative into a positive: ascending GABAergic control of cortical activation and arousal. Front Neurol. 2015;6:135.

    PubMed  PubMed Central  Google Scholar 

  74. Greenspan JD, Joy SE, McGillis SL, Checkosky CM, Bolanowski SJ. A longitudinal study of somesthetic perceptual disorders in an individual with a unilateral thalamic lesion. Pain. 1997;72(1–2):13–25.

    Article  CAS  PubMed  Google Scholar 

  75. Attal N, Brasseur L, Chauvin M, Bouhassira D. A case of ‘pure’ dynamic mechano-allodynia due to a lesion of the spinal cord: pathophysiological considerations. Pain. 1998;75(2–3):399–404.

    Article  CAS  PubMed  Google Scholar 

  76. Ducreux D, Attal N, Parker F, Bouhassira D. Mechanisms of central neuropathic pain: a combined psychophysical and fMRI study in syringomyelia. Brain. 2006;129(Pt 4):963–76.

    Article  PubMed  Google Scholar 

  77. Hatem SM, Attal N, Ducreux D, Gautron M, Parker F, Plaghki L, Bouhassira D. Clinical, functional and structural determinants of central pain in syringomyelia. Brain. 2010;133(11):3409–22.

    Article  PubMed  Google Scholar 

  78. Attal N, Gaudé V, Brasseur L, Dupuy M, Guirimand F, Parker F, Bouhassira D. Intravenous lidocaine in central pain: a double-blind, placebo-controlled, psychophysical study. Neurology. 2000;54(3):564–74.

    Article  CAS  PubMed  Google Scholar 

  79. Attal N, Guirimand F, Brasseur L, Gaude V, Chauvin M, Bouhassira D. Effects of IV morphine in central pain: a randomized placebo-controlled study. Neurology. 2002;58(4):554–63.

    Article  CAS  PubMed  Google Scholar 

  80. Sasaki M, Abekura M, Morris S, Kataoka Y, Yoshimura K, Ninomiya K, Iwatsuki K, Yoshimine T. Allodynia corresponding to the levels of cervical cord injury treated by surgical decompression: a report of 3 cases. Surg Neurol. 2009;72(3):281–5.

    Article  PubMed  Google Scholar 

  81. Choi JH, Choi JH, Sim JH, Lee S, Ahn HS, Choi SS. Development of tactile allodynia immediately after spinal anesthesia. Pain Med. 2015;16(6):1242–4.

    Article  PubMed  Google Scholar 

  82. Kim YS, Anderson M, Park K, Zheng Q, Agarwal A, Gong C, Saijilafu, Young L, He S, LaVinka PC, Zhou F, Bergles D, Hanani M, Guan Y, Spray DC, Dong X. Coupled activation of primary sensory neurons contributes to chronic pain. Neuron. 2016;91(5):1085–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Michelsen JJ. Subjective disturbances of the sense of pain from lesions of the cerebral cortex. Res Publ Assoc Res Nerv Ment Dis. 1943;23:86–99.

    Google Scholar 

  84. Silver ML. Central pain from cerebral arteriovenous aneurysm. J Neurosurg. 1957;14(1):92–6.

    Article  CAS  PubMed  Google Scholar 

  85. Di Biagio F. Dolore centrale da lesione sopratalamica regredito con atophanyl. Riv Neurol. 1959;29:476–81.

    Google Scholar 

  86. Retif J. Douleur centrale et lesion suprathalamique. Méningiome temporo-pariétal se manifestant par un syndrome algique paroxystique à caractère pseudoradiculaire du membre inférieur controlateral. Acta Neurol Psychiatr Belg. 1963;63:955–69.

    CAS  PubMed  Google Scholar 

  87. Gonzales GR, Herskovitz S, Rosenblum M, Foley KM, Kanner R, Brown A, Portenoy RK. Central pain from cerebral abscess: thalamic syndrome in AIDS patients with toxoplasmosis. Neurology. 1992;42(5):1107–9.

    Article  CAS  PubMed  Google Scholar 

  88. Stoodley MA, Warren JD, Oatey PE. Thalamic syndrome caused by unruptured cerebral aneurysm. Case report. J Neurosurg. 1995;82(2):291–3.

    Google Scholar 

  89. Potagas C, Avdelidis D, Singounas E, Missir O, Aessopos A. Episodic pain associated with a tumor in the parietal operculum: a case report and literature review. Pain. 1997;72(1–2):201–8.

    Article  CAS  PubMed  Google Scholar 

  90. Fukuhara T, McKhann GM II, Santiago P, Eskridge JM, Loeser JD, Winn HR. Resolution of central pain after embolization of an arteriovenous malformation. Case report. J Neurosurg. 1999;90(3):575–9.

    Article  CAS  PubMed  Google Scholar 

  91. Barraquer-Bordas L, Molet J, Pascual-Sedano B, Català H. Dolor central retardado asociado a hematoma subinsular seguido por tumor parietooccipital. Efecto favorable de la estimulacion cronica del nucleo VPL talamico. Rev Neurol. 1999;29(11):1044–8.

    CAS  PubMed  Google Scholar 

  92. Pagni CA, Canavero S. Paroxysmal perineal pain resembling tic douloureux, only symptom of a dorsal meningioma. Ital J Neurol Sci. 1993;14(4):323–4.

    Article  CAS  PubMed  Google Scholar 

  93. Canavero S, Pagni CA, Bonicalzi V. Transient hyperacute allodynia in Schneider’s syndrome: an irritative genesis? Ital J Neurol Sci. 1995;16(8):555–7.

    Article  CAS  PubMed  Google Scholar 

  94. Pagni CA, Canavero S. Functional thalamic depression in a case of reversible central pain due to a spinal intramedullary cyst. Case report. J Neurosurg. 1995;83(1):163–5.

    Article  CAS  PubMed  Google Scholar 

  95. Canavero S, Bonicalzi V. Reversible central pain. Neurol Sci. 2001;22(3):271–3.

    Article  CAS  PubMed  Google Scholar 

  96. Bonicalzi V, Graziano A, Roero C, Canavero S. Reversible, hyperacute allodynia after evacuation of a cervical epidural hematoma. J Pain Symptom Manage. 2012;43(2):e9–11.

    Article  PubMed  Google Scholar 

  97. Schott GD. Delayed onset and resolution of pain: some observations and implications. Brain. 2001;124(Pt 6):1067–76.

    Google Scholar 

  98. DeSouza DD, Davis KD, Hodaie M. Reversal of insular and microstructural nerve abnormalities following effective surgical treatment for trigeminal neuralgia. Pain. 2015;156(6):1112–23.

    PubMed  Google Scholar 

  99. Carrillo-Ruiz JD, Soto-Barraza JC, Fuentes-Manzo A, Kassian A, Becerra-Escobedo G, Velasco F, Frade-García A. Amelioration of chronic neuropathic pain and motor deficit following removal of lumbar vertebroplasty intradural cement. Clin Neurol Neurosurg. 2013;115(6):836–8.

    Article  PubMed  Google Scholar 

  100. Gwilym SE, Filippini N, Douaud G, Carr AJ, Tracey I. Thalamic atrophy associated with painful osteoarthritis of the hip is reversible after arthroplasty: a longitudinal voxel-based morphometric study. Arthritis Rheum. 2010;62(10):2930–40.

    Article  PubMed  Google Scholar 

  101. Ginanneschi F, Mondelli M, Rossi A. Sensory neuropathy may cause central neuronal reorganization but does not respecify perceptual quality or localization of sensation. Clin J Pain. 2012;28(8):653–7.

    Article  PubMed  Google Scholar 

  102. Kiss ZH, Dostrovsky JO, Tasker RR. Plasticity in human somatosensory thalamus as a result of deafferentation. Stereotact Funct Neurosurg. 1994;62(1–4):153–63.

    Article  CAS  PubMed  Google Scholar 

  103. Lenz FA, Gracely RH, Baker FH, Richardson RT, Dougherty PM. Reorganization of sensory modalities evoked by microstimulation in region of the thalamic principal sensory nucleus in patients with pain due to nervous system injury. J Comp Neurol. 1998;399(1):125–38.

    Article  CAS  PubMed  Google Scholar 

  104. Davis KD, Kiss ZH, Luo L, Tasker RR, Lozano AM, Dostrovsky JO. Phantom sensations generated by thalamic microstimulation. Nature. 1998;391(6665):385–7.

    Article  CAS  PubMed  Google Scholar 

  105. Ojemann JG, Silbergeld DL. Cortical stimulation mapping of phantom limb rolandic cortex. Case report. J Neurosurg. 1995;82(4):641–4.

    Article  CAS  PubMed  Google Scholar 

  106. Woolsey CN, Erickson TC, Gilson WE. Localization in somatic sensory and motor areas of human cerebral cortex as determined by direct recording of evoked potentials and electrical stimulation. J Neurosurg. 1979;51(4):476–506.

    Article  CAS  PubMed  Google Scholar 

  107. Berić A. Central pain: “new” syndromes and their evaluation. Muscle Nerve. 1993;16(10):1017–24.

    Google Scholar 

  108. Stavraky GW. Supersensitivity Following Lesions of the Nervous System. Toronto: University of Toronto Press: 1961.

    Google Scholar 

  109. Landry RP, Jacobs VL, Romero-Sandoval EA, DeLeo JA. Propentofylline, a CNS glial modulator does not decrease pain in post-herpetic neuralgia patients: in vitro evidence for differential responses in human and rodent microglia and macrophages. Exp Neurol. 2012;234(2):340–50.

    Article  CAS  PubMed  Google Scholar 

  110. Martinez V, Szekely B, Lemarié J, Martin F, Gentili M, Ben Ammar S, Lepeintre JF, Garreau de Loubresse C, Chauvin M, Bouhassira D, Fletcher D. The efficacy of a glial inhibitor, minocycline, for preventing persistent pain after lumbar discectomy: a randomized, double-blind, controlled study. Pain. 2013;154(8):1197–203.

    Article  CAS  PubMed  Google Scholar 

  111. Kwok YH, Swift JE, Gazerani P, Rolan P. A double-blind, randomized, placebo-controlled pilot trial to determine the efficacy and safety of ibudilast, a potential glial attenuator, in chronic migraine. J Pain Res. 2016;9:899–907.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Hübscher M, Moloney N, Leaver A, Rebbeck T, McAuley JH, Refshauge KM. Relationship between quantitative sensory testing and pain or disability in people with spinal pain—a systematic review and meta-analysis. Pain. 2013;154(9):1497–504.

    Article  PubMed  Google Scholar 

  113. Mohajerani MH, Aminoltejari K, Murphy TH. Targeted mini-strokes produce changes in interhemispheric sensory signal processing that are indicative of disinhibition within minutes. Proc Natl Acad Sci U S A. 2011;108(22):E183–91.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Makin TR, Scholz J, Henderson Slater D, Johansen-Berg H, Tracey I. Reassessing cortical reorganization in the primary sensorimotor cortex following arm amputation. Brain. 2015;138(Pt 8):2140–6.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Jutzeler CR, Curt A, Kramer JL. Relationship between chronic pain and brain reorganization after deafferentation: a systematic review of functional MRI findings. Neuroimage Clin. 2015a;9:599–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Spitzer NC. Neurotransmitter switching? No surprise. Neuron. 2015;86:1131–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Segerdahl AR, Mezue M, Okell TW, Farrar JT, Tracey I. The dorsal posterior insula subserves a fundamental role in human pain. Nat Neurosci. 2015;18(4):499–500.

    Article  CAS  PubMed  Google Scholar 

  118. Nieuwenhuys R. The insular cortex: a review. Prog Brain Res. 2012;195:123–63.

    Article  PubMed  Google Scholar 

  119. Davis KD, Bushnell MC, Iannetti GD, St Lawrence K, Coghill R. Evidence against pain specificity in the dorsal posterior insula. F1000Res. 2015;4:362.

    PubMed  PubMed Central  Google Scholar 

  120. Starr CJ, Sawaki L, Wittenberg GF, Burdette JH, Oshiro Y, Quevedo AS, Coghill RC. Roles of the insular cortex in the modulation of pain: insights from brain lesions. J Neurosci. 2009;29(9):2684–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Feinstein JS, Khalsa SS, Salomons TV, Prkachin KM, Frey-Law LA, Lee JE, Tranel D, Rudrauf D. Preserved emotional awareness of pain in a patient with extensive bilateral damage to the insula, anterior cingulate, and amygdala. Brain Struct Funct. 2016;221(3):1499–511.

    Article  PubMed  Google Scholar 

  122. Khalsa SS, Rudrauf D, Feinstein JS, Tranel D. The pathways of interoceptive awareness. Nat Neurosci. 2009;12(12):1494–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Philippi CL, Feinstein JS, Khalsa SS, Damasio A, Tranel D, Landini G, Williford K, Rudrauf D. Preserved self-awareness following extensive bilateral brain damage to the insula, anterior cingulate, and medial prefrontal cortices. PLoS One. 2012;7(8):e38413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Damasio A, Damasio H, Tranel D. Persistence of feelings and sentience after bilateral damage of the insula. Cereb Cortex. 2013;23(4):833–46.

    Article  PubMed  Google Scholar 

  125. Couto B, Adolfi F, Sedeño L, Salles A, Canales-Johnson A, Alvarez-Abut P, Garcia-Cordero I, Pietto M, Bekinschtein T, Sigman M, Manes F, Ibanez A. Disentangling interoception: insights from focal strokes affecting the perception of external and internal milieus. Front Psych. 2015;6:503.

    Google Scholar 

  126. Birklein F, Rolke R, Müller-Forell W. Isolated insular infarction eliminates contralateral cold, cold pain, and pinprick perception. Neurology. 2005;65(9):1381.

    Article  PubMed  Google Scholar 

  127. Cattaneo L, Chierici E, Cucurachi L, Cobelli R, Pavesi G. Posterior insular stroke causing selective loss of contralateral nonpainful thermal sensation. Neurology. 2007;68(3):237.

    Article  CAS  PubMed  Google Scholar 

  128. Hiraga A, Sakakibara R, Mizobuchi K, Asahina M, Kuwabara S, Hayashi Y, Hattori T. Putaminal hemorrhage disrupts thalamocortical projection to secondary somatosensory cortex: case report. J Neurol Sci. 2005;231(1-2):81–3.

    Article  PubMed  Google Scholar 

  129. Frot M, Magnin M, Mauguière F, Garcia-Larrea L. Cortical representation of pain in primary sensory-motor areas (S1/M1)—a study using intracortical recordings in humans. Hum Brain Mapp. 2013;34(10):2655–68.

    Article  PubMed  Google Scholar 

  130. Mochizuki H, Kakigi R. Central mechanisms of itch. Clin Neurophysiol. 2015;126(9):1650–60.

    Article  PubMed  Google Scholar 

  131. Inui K, Wang X, Qiu Y, Nguyen BT, Ojima S, Tamura Y, Nakata H, Wasaka T, Tran TD, Kakigi R. Pain processing within the primary somatosensory cortex in humans. Eur J Neurosci. 2003;18:2859–66.

    Article  PubMed  Google Scholar 

  132. Kanda M, Nagamine T, Ikeda A, Ohara S, Kunieda T, Fujiwara N, Yazawa S, Sawamoto N, Matsumoto R, Taki W, Shibasaki H. Primary somatosensory cortex is actively involved in pain processing in human. Brain Res. 2000;853:282–9.

    Article  CAS  PubMed  Google Scholar 

  133. Nakata H, Tamura Y, Sakamoto K, Akatsuka K, Hirai M, Inui K, Hoshiyama M, Saitoh Y, Yamamoto T, Katayama Y, Kakigi R. Evoked magnetic fields following noxious laser stimulation of the thigh in humans. Neuroimage. 2008;42:858–68.

    Article  PubMed  Google Scholar 

  134. Nir RR, Lev R, Moont R, Granovsky Y, Sprecher E, Yarnitsky D. Neurophysiology of the cortical pain network: revisiting the role of S1 in subjective pain perception via standardized low-resolution brain electromagnetic tomography (sLORETA). J Pain. 2008;9(11):1058–69.

    Article  PubMed  Google Scholar 

  135. Poreisz C, Antal A, Boros K, Brephol N, Csifcsak G, Paulus W. Attenuation of N2 amplitude of laser-evoked potentials by theta burst stimulation of primary somatosensory cortex. Exp Brain Res. 2008;185:611–21.

    Article  PubMed  Google Scholar 

  136. Gross J, Schnitzler A, Timmermann L, Ploner M. Gamma oscillations in human primary somatosensory cortex reflect pain perception. PLoS Biol. 2007;5(5):e133.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Ohara S, Crone NE, Weiss N, Treede RD, Lenz FA. Cutaneous painful laser stimuli evoke responses recorded directly from primary somatosensory cortex in awake humans. J Neurophysiol. 2004;91:2734–46.

    Article  CAS  PubMed  Google Scholar 

  138. Liu CC, Franaszczuk P, Crone NE, Jouny C, Lenz FA. Studies of properties of “Pain Networks” as predictors of targets of stimulation for treatment of pain. Front Integr Neurosci. 2011;5:80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Erpelding N, Moayedi M, Davis KD. Cortical thickness correlates of pain and temperature sensitivity. Pain. 2012;153(8):1602–9.

    Article  PubMed  Google Scholar 

  140. Valentini E, Hu L, Chakrabarti B, Hu Y, Aglioti SM, Iannetti GD. The primary somatosensory cortex largely contributes to the early part of the cortical response elicited by nociceptive stimuli. Neuroimage. 2012;59(2):1571–81.

    Article  CAS  PubMed  Google Scholar 

  141. Marshall J. Sensory disturbances in cortical wounds with special reference to pain. J Neurol Neurosurg Psychiatry. 1951;14(3):187–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Ploner M, Freund HJ, Schnitzler A. Pain affect without pain sensation in a patient with a postcentral lesion. Pain. 1999;81(1–2):211–4.

    Article  CAS  PubMed  Google Scholar 

  143. Mancini F, Haggard P, Iannetti GD, Longo MR, Sereno MI. Fine-grained nociceptive maps in primary somatosensory cortex. J Neurosci. 2012;32(48):17155–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Omori S, Isose S, Otsuru N, Nishihara M, Kuwabara S, Inui K, Kakigi R. Somatotopic representation of pain in the primary somatosensory cortex (S1) in humans. Clin Neurophysiol. 2013;124(7):1422–30.

    Article  PubMed  Google Scholar 

  145. Pugnaghi M, Meletti S, Castana L, Francione S, Nobili L, Mai R, Tassi L. Features of somatosensory manifestations induced by intracranial electrical stimulations of the human insula. Clin Neurophysiol. 2011;122(10):2049–58.

    Article  PubMed  Google Scholar 

  146. Denis DJ, Marouf R, Rainville P, Bouthillier A, Nguyen DK. Effects of insular stimulation on thermal nociception. Eur J Pain. 2016;20(5):800–10.

    Article  CAS  PubMed  Google Scholar 

  147. Gazzola V, Spezio ML, Etzel JA, Castelli F, Adolphs R, Keysers C. Primary somatosensory cortex discriminates affective significance in social touch. Proc Natl Acad Sci U S A. 2012;109(25):E1657–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Avanzini P, Abdollahi RO, Sartori I, Caruana F, Pelliccia V, Casaceli G, Mai R, Lo Russo G, Rizzolatti G, Orban GA. Four-dimensional maps of the human somatosensory system. Proc Natl Acad Sci U S A. 2016;113(13):E1936–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Liang M, Mouraux A, Iannetti GD. Parallel processing of nociceptive and non-nociceptive somatosensory information in the human primary and secondary somatosensory cortices: evidence from dynamic causal modeling of functional magnetic resonance imaging data. J Neurosci. 2011;31(24):8976–85.

    Article  CAS  PubMed  Google Scholar 

  150. Liang M, Mouraux A, Iannetti GD. Bypassing primary sensory cortices—a direct thalamocortical pathway for transmitting salient sensory information. Cereb Cortex. 2013;23(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  151. Salomons TV, Iannetti GD, Liang M, Wood JN. The “Pain Matrix” in pain-free individuals. JAMA Neurol. 2016;73(6):755–6.

    Article  PubMed  Google Scholar 

  152. Smallwood RF, Laird AR, Ramage AE, Parkinson AL, Lewis J, Clauw DJ, Williams DA, Schmidt-Wilcke T, Farrell MJ, Eickhoff SB, Robin DA. Structural brain anomalies and chronic pain: a quantitative meta-analysis of gray matter volume. J Pain. 2013;14(7):663–75.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Palomero-Gallagher N, Eickhoff SB, Hoffstaedter F, Schleicher A, Mohlberg H, Vogt BA, Amunts K, Zilles K. Functional organization of human subgenual cortical areas: relationship between architectonical segregation and connectional heterogeneity. Neuroimage. 2015;115:177–90.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Wager TD, Atlas LY, Botvinick MM, Chang LJ, Coghill RC, Davis KD, Iannetti GD, Poldrack RA, Shackman AJ, Yarkoni T. Pain in the ACC? Proc Natl Acad Sci U S A. 2016;113(18):E2474–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Iannetti GD, Mouraux A. From the neuromatrix to the pain matrix (and back). Exp Brain Res. 2010;205(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  156. Gibbs FA, Gibbs EL, Lennox WG. The likeliness of the cortical dysrhythmias of schizophrenia and psychomotor epilepsy. Am J Psychiatry. 1938;95:255–69.

    Article  Google Scholar 

  157. Jones SR. When brain rhythms aren’t ‘rhythmic’: implication for their mechanisms and meaning. Curr Opin Neurobiol. 2016;40:72–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Pockett S, Holmes MD. Intracranial EEG power spectra and phase synchrony during consciousness and unconsciousness. Conscious Cogn. 2009;18(4):1049–55.

    Article  PubMed  Google Scholar 

  159. Merker BH. Cortical gamma oscillations: details of their genesis preclude a role in cognition. Front Comput Neurosci. 2016;10:78.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Ray S, Maunsell JH. Do gamma oscillations play a role in cerebral cortex? Trends Cogn Sci. 2015;19(2):78–85.

    Article  PubMed  Google Scholar 

  161. Michail G, Dresel C, Witkovský V, Stankewitz A, Schulz E. Neuronal oscillations in various frequency bands differ between pain and touch. Front Hum Neurosci. 2016;10:182.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Michels L, Moazami-Goudarzi M, Jeanmonod D. Correlations between EEG and clinical outcome in chronic neuropathic pain: surgical effects and treatment resistance. Brain Imaging Behav. 2011;5(4):329–48.

    Article  PubMed  Google Scholar 

  163. Jensen MP, Sherlin LH, Gertz KJ, Braden AL, Kupper AE, Gianas A, Howe JD, Hakimian S. Brain EEG activity correlates of chronic pain in persons with spinal cord injury: clinical implications. Spinal Cord. 2013;51(1):55–8.

    Article  CAS  PubMed  Google Scholar 

  164. Basha D, Dostrovsky JO, Lopez Rios AL, Hodaie M, Lozano AM, Hutchison WD. Beta oscillatory neurons in the motor thalamus of movement disorder and pain patients. Exp Neurol. 2014;261:782–90.

    Article  PubMed  Google Scholar 

  165. Vuckovic A, Hasan MA, Fraser M, Conway BA, Nasseroleslami B, Allan DB. Dynamic oscillatory signatures of central neuropathic pain in spinal cord injury. J Pain. 2014;15(6):645–55.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Vuckovic A, Hasan MA, Osuagwu B, Fraser M, Allan DB, Conway BA, Nasseroleslami B. The influence of central neuropathic pain in paraplegic patients on performance of a motor imagery based brain computer interface. Clin Neurophysiol. 2015;126(11):2170–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Hassan MA, Fraser M, Conway BA, Allan DB, Vuckovic A. The mechanism of neurofeedback training for treatment of central neuropathic pain in paraplegia: a pilot study. BMC Neurol. 2015;15:200.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Hassan MA, Fraser M, Conway BA, Allan DB, Vučković A. Reversed cortical over-activity during movement imagination following neurofeedback treatment for central neuropathic pain. Clin Neurophysiol. 2016;127(9):3118–27.

    Article  Google Scholar 

  169. Passingham RE, Rowe JB, Sakai K. Has brain imaging discovered anything new about how the brain works? Neuroimage. 2013;66:142–50.

    Article  CAS  PubMed  Google Scholar 

  170. Eklund A, Nichols TE, Knutsson H. Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates. Proc Natl Acad Sci U S A. 2016;113(28):7900–5. Erratum in: Proc Natl Acad Sci U S A. 2016;113(33):E4929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Eliasmith C, Trujillo O. The use and abuse of large-scale brain models. Curr Opin Neurobiol. 2014;25:1–6.

    Article  CAS  PubMed  Google Scholar 

  172. Goense J, Bohraus Y, Logothetis NK. fMRI at high spatial resolution: implications for BOLD-models. Front Comput Neurosci. 2016;10:66.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Uddin LQ. Complex relationships between structural and functional brain connectivity. Trends Cogn Sci. 2013;17(12):600–2.

    Article  PubMed  Google Scholar 

  174. Papo D, Zanin M, Buldú JM. Reconstructing functional brain networks: have we got the basics right? Front Hum Neurosci. 2014;8:107.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Papo D, Zanin M, Martínez JH, Buldú JM. Beware of the small-world neuroscientist! Front Hum Neurosci. 2016;10:96.

    PubMed  PubMed Central  Google Scholar 

  176. Nazarova M, Blagovechtchenski E. Modern brain mapping—what do we map nowadays? Front Psych. 2015;6:89.

    Google Scholar 

  177. Tong Y, Hocke LM, Fan X, Janes AC, Bd F. Can apparent resting state connectivity arise from systemic fluctuations? Front Hum Neurosci. 2015;9:285.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Johansen-Berg H. Human connectomics. What will the future demand? Neuroimage. 2013;80:541–4.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Kolesar TA, Fiest KM, Smith SD, Kornelsen J. Assessing nociception by fMRI of the human spinal cord: a systematic review. Magn Reson Insights. 2015;8(Suppl 1):31–9.

    PubMed  PubMed Central  Google Scholar 

  180. Kalita J, Kumar B, Misra UK, Pradhan PK. Central post stroke pain: clinical, MRI, and SPECT correlation. Pain Med. 2011;12(2):282–8.

    Article  PubMed  Google Scholar 

  181. Hong JH, Choi BY, Chang CH, Kim SH, Jung YJ, Lee DG, Kwon YH, Jang SH. The prevalence of central poststroke pain according to the integrity of the spino-thalamo-cortical pathway. Eur Neurol. 2012;67(1):12–7.

    Article  PubMed  Google Scholar 

  182. Deppe M, Müller D, Kugel H, Ruck T, Wiendl H, Meuth SG. DTI detects water diffusion abnormalities in the thalamus that correlate with an extremity pain episode in a patient with multiple sclerosis. Neuroimage Clin. 2013;2:258–62.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Peyron R, Faillenot I, Pomares FB, Le Bars D, Garcia-Larrea L, Laurent B. Mechanical allodynia in neuropathic pain. Where are the brain representations located? A positron emission tomography (PET) study. Eur J Pain. 2013;17(9):1327–37.

    Article  CAS  PubMed  Google Scholar 

  184. Yoon EJ, Kim YK, Shin HI, Lee Y, Kim SE. Cortical and white matter alterations in patients with neuropathic pain after spinal cord injury. Brain Res. 2013;1540:64–73.

    Article  CAS  PubMed  Google Scholar 

  185. Widerström-Noga E, Pattany PM, Cruz-Almeida Y, Felix ER, Perez S, Cardenas DD, Martinez-Arizala A. Metabolite concentrations in the anterior cingulate cortex predict high neuropathic pain impact after spinal cord injury. Pain. 2013;154(2):204–12.

    Article  PubMed  CAS  Google Scholar 

  186. Widerström-Noga E, Cruz-Almeida Y, Felix ER, Pattany PM. Somatosensory phenotype is associated with thalamic metabolites and pain intensity after spinal cord injury. Pain. 2015;156(1):166–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Mole TB, MacIver K, Sluming V, Ridgway GR, Nurmikko TJ. Specific brain morphometric changes in spinal cord injury with and without neuropathic pain. Neuroimage Clin. 2014;5:28–35.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Gustin SM, Wrigley PJ, Youssef AM, McIndoe L, Wilcox SL, Rae CD, Edden RA, Siddall PJ, Henderson LA. Thalamic activity and biochemical changes in individuals with neuropathic pain after spinal cord injury. Pain. 2014;155(5):1027–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Grabher P, Callaghan MF, Ashburner J, Weiskopf N, Thompson AJ, Curt A, Freund P. Tracking sensory system atrophy and outcome prediction in spinal cord injury. Ann Neurol. 2015;78(5):751–61.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Kim JH, Ahn SH, Cho YW, Kim SH, Jang SH. The relation between injury of the spinothalamocortical tract and central pain in chronic patients with mild traumatic brain injury. J Head Trauma Rehabil. 2015;30(6):E40–6.

    Article  PubMed  Google Scholar 

  191. Jutzeler CR, Freund P, Huber E, Curt A, Kramer JL. Neuropathic pain and functional reorganization in the primary sensorimotor cortex after spinal cord injury. J Pain. 2015b;16(12):1256–67.

    Article  PubMed  Google Scholar 

  192. Wrigley PJ, Press SR, Gustin SM, Macefield VG, Gandevia SC, Cousins MJ, Middleton JW, Henderson LA, Siddall PJ. Neuropathic pain and primary somatosensory cortex reorganization following spinal cord injury. Pain. 2009;141(1–2):52–9.

    Google Scholar 

  193. Flor H, Elbert T, Knecht S, Wienbruch C, Pantev C, Birbaumer N, Larbig W, Taub E. Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature. 1995;375(6531):482–4.

    Google Scholar 

  194. Jutzeler CR, Huber E, Callaghan MF, Luechinger R, Curt A, Kramer JL, Freund P. Association of pain and CNS structural changes after spinal cord injury. Sci Rep. 2016;6:18534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Widerström-Noga E, Govind V, Adcock JP, Levin BE, Maudsley AA. Subacute pain after traumatic brain injury is associated with lower insular N-acetylaspartate concentrations. J Neurotrauma. 2016;33(14):1380–9.

    Article  PubMed  PubMed Central  Google Scholar 

  196. Jang SH, Park SM, Kwon HG. Relation between injury of the periaqueductal gray and central pain in patients with mild traumatic brain injury: observational study. Medicine (Baltimore). 2016;95(26):e4017.

    Article  Google Scholar 

  197. Gopalakrishnan R, Burgess RC, Lempka SF, Gale JT, Floden DP, Machado AG. Pain anticipatory phenomena in patients with central poststroke pain: a magnetoencephalography study. J Neurophysiol. 2016;116(3):1387–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Stroman PW, Khan HS, Bosma RL, Cotoi AI, Leung R, Cadotte DW, Fehlings MG. Changes in pain processing in the spinal cord and brainstem after spinal cord injury characterized by functional magnetic resonance imaging. J Neurotrauma. 2016;33:1450–60.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Canavero, S., Bonicalzi, V. (2018). Genesis. In: Central Pain Syndrome. Springer, Cham. https://doi.org/10.1007/978-3-319-56765-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56765-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56764-8

  • Online ISBN: 978-3-319-56765-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics