Genesis

  • Sergio Canavero
  • Vincenzo Bonicalzi
Chapter

Abstract

The anatomophysiological “engine” of CP is a focal, self-sustaining, reverberating loop between the sensory cortex and the sensory thalamus (Dynamic Reverberation, DR) ([1], Figs. 8.1 and 8.2), following the establishment of an intracortical S1 attractor state (locked S1) (e.g., layer 4⇒ (layer 2/3⇒) layer 5⇒ layer 6⇒ layer 4+corticothalamic outflow). The attendant sensory information decorrelation translates into different sensory percepts (pain, dysesthesias, paresthesias, pruritus).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Canavero S. Dynamic reverberation. A unified mechanism for central and phantom pain. Med Hypotheses. 1994;42(3):203–7.PubMedCrossRefGoogle Scholar
  2. 2.
    Riddoch G, Critchley M. La physiopathologie de la douleur d’origine centrale. Rev Neurol (Paris). 1937;68:77–104.Google Scholar
  3. 3.
    Canavero S. Bilateral central pain. Acta Neurol Belg. 1996;96(2):135–6.PubMedGoogle Scholar
  4. 4.
    Kim JS. Delayed-onset ipsilateral sensory symptoms in patients with central poststroke pain. Eur Neurol. 1998;40(4):201–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Gorecki J, Hirayama T, Dostrovsky JO, Tasker RR, Lenz FA. Thalamic stimulation and recording in patients with deafferentation and central pain. Stereotact Funct Neurosurg. 1989;52(2–4):219–26.PubMedCrossRefGoogle Scholar
  6. 6.
    Kim JS. Aggravation of poststroke sensory symptoms after a second stroke on the opposite side. Eur Neurol. 1999;42(4):200–4.PubMedCrossRefGoogle Scholar
  7. 7.
    Helmchen C, Lindig M, Petersen D, Tronnier V. Disappearance of central thalamic pain syndrome after contralateral parietal lobe lesion: implications for therapeutic brain stimulation. Pain. 2002;98(3):325–30.PubMedCrossRefGoogle Scholar
  8. 8.
    Daniele O, Fierro B, Brighina F, Magaudda A, Natalè E. Disappearance of haemorrhagic stroke-induced thalamic (central) pain following a further (contralateral ischaemic) stroke. Funct Neurol. 2003;18(2):95–6.PubMedGoogle Scholar
  9. 9.
    Cordery RJ, Rossor MN. Bilateral thalamic pain secondary to bilateral thalamic infarcts relieved by a further unilateral ischaemic episode. Eur J Neurol. 1999;6(6):717–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Parrent AG, Lozano AM, Dostrovsky JO, Tasker RR. Central pain in the absence of functional sensory thalamus. Stereotact Funct Neurosurg. 1992;59:9–14.PubMedCrossRefGoogle Scholar
  11. 11.
    Greenspan JD, Ohara S, Sarlani E, Lenz FA. Allodynia in patients with post-stroke central pain (CPSP) studied by statistical quantitative sensory testing within individuals. Pain. 2004;109(3):357–66.PubMedCrossRefGoogle Scholar
  12. 12.
    Kim JH, Greenspan JD, Coghill RC, Ohara S, Lenz FA. Lesions limited to the human thalamic principal somatosensory nucleus (ventral caudal) are associated with loss of cold sensations and central pain. J Neurosci. 2007;27(18):4995–500.PubMedCrossRefGoogle Scholar
  13. 13.
    Berić A, Dimitrijević MR, Lindblom U. Central dysesthesia syndrome in spinal cord injury patients. Pain. 1988;34(2):109–16.PubMedCrossRefGoogle Scholar
  14. 14.
    Boivie J, Leijon G, Johansson I. Central post-stroke pain—a study of the mechanisms through analyses of the sensory abnormalities. Pain. 1989;37(2):173–85.PubMedCrossRefGoogle Scholar
  15. 15.
    Vestergaard K, Nielsen J, Andersen G, Ingeman-Nielsen M, Arendt-Nielsen L, Jensen TS. Sensory abnormalities in consecutive, unselected patients with central post-stroke pain. Pain. 1995;61(2):177–86.PubMedCrossRefGoogle Scholar
  16. 16.
    Casey KL, Geisser M, Lorenz J, Morrow TJ, Paulson P, Minoshima S. Psychophysical and cerebral responses to heat stimulation in patients with central pain, painless central sensory loss, and in healthy persons. Pain. 2012;153(2):331–41.PubMedCrossRefGoogle Scholar
  17. 17.
    Krause T, Asseyer S, Taskin B, Flöel A, Witte AV, Mueller K, Fiebach JB, Villringer K, Villringer A, Jungehulsing GJ. The cortical signature of central poststroke pain: gray matter decreases in somatosensory, insular, and prefrontal cortices. Cereb Cortex. 2016;26(1):80–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Franzini A, Ferroli P, Dones I, Marras C, Broggi G. Chronic motor cortex stimulation for movement disorders: a promising perspective. Neurol Res. 2003;25(2):123–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Canavero S, Ren X, Kim CY, Rosati E. Neurologic foundations of spinal cord fusion (GEMINI). Surgery. 2016;160(1):11–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Prescott SA, Rattè S. Pain processing by spinal microcircuits: afferent combinatorics. Curr Op Neurobiol. 2012;22:631–9.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Nash P, Wiley K, Brown J, Shinaman R, Ludlow D, Sawyer AM, Glover G, Mackey S. Functional magnetic resonance imaging identifies somatotopic organization of nociception in the human spinal cord. Pain. 2013;154(6):776–81.PubMedCrossRefGoogle Scholar
  22. 22.
    Awad AJ, Forbes JA, Jermakowicz W, Eli IM, Blumenkopf B, Konrad P. Experience with 25 years of dorsal root entry zone lesioning at a single institution. Surg Neurol Int. 2013;4:64.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Edgar RE, Best LG, Quail PA, Obert AD. Computer-assisted DREZ microcoagulation: posttraumatic spinal deafferentation pain. J Spinal Disord. 1993;6(1):48–56.PubMedCrossRefGoogle Scholar
  24. 24.
    Falci S, Best L, Bayles R, Lammertse D, Starnes C. Dorsal root entry zone microcoagulation for spinal cord injury-related central pain: operative intramedullary electrophysiological guidance and clinical outcome. J Neurosurg. 2002;97(2 Suppl):193–200.PubMedGoogle Scholar
  25. 25.
    Gybels JM, Sweet WH. Neurosurgical treatment of persistent pain. Physiological and pathological mechanisms of human pain. Pain Headache. 1989;11:1–402.PubMedGoogle Scholar
  26. 26.
    King RB. Anterior commissurotomy for intractable pain. J Neurosurg. 1977;47(1):7–11.PubMedCrossRefGoogle Scholar
  27. 27.
    Bassetti C, Bogousslavsky J, Mattle H, Bernasconi A. Medial medullary stroke: report of seven patients and review of the literature. Neurology. 1997;48(4):882–90.PubMedCrossRefGoogle Scholar
  28. 28.
    Rousseaux M, Cassim F, Bayle B, Laureau E. Analysis of the perception of and reactivity to pain and heat in patients with Wallenberg syndrome and severe spinothalamic tract dysfunction. Stroke. 1999;30(10):2223–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Amano K, Iseki H, Notani M, Kawabatake H, Tanikawa T, Kawamura H, Kitamura K. Rostral mesencephalic reticulotomy for pain relief. Report of 15 cases. Acta Neurochir Suppl (Wien). 1980;30:391–3.CrossRefGoogle Scholar
  30. 30.
    Amano K, Kawamura H, Tanikawa T, Kawabatake H, Iseki H, Taira T. Stereotactic mesencephalotomy for pain relief. A plea for stereotactic surgery. Stereotact Funct Neurosurg. 1992;59(1–4):25–32.PubMedCrossRefGoogle Scholar
  31. 31.
    Shieff C, Nashold BS Jr. Thalamic pain and stereotactic mesencephalotomy. Acta Neurochir Suppl (Wien). 1988;42:239–42.Google Scholar
  32. 32.
    Kim JS. Medial medullary infarct aggravates central poststroke pain caused by previous lateral medullary infarct. Eur Neurol. 2007;58(1):41–3.PubMedCrossRefGoogle Scholar
  33. 33.
    Tasker RR. Central pain states. In: Loeser JD, editor. Bonica’s management of pain. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2001.Google Scholar
  34. 34.
    Canavero S, Bonicalzi V. Central pain syndrome: pathophysiology, diagnosis and management. Cambridge: Cambridge University Press; 2007.CrossRefGoogle Scholar
  35. 35.
    Canavero S, Bonicalzi V. Central pain syndrome: pathophysiology, diagnosis and management. 2nd ed. Cambridge: Cambridge University Press; 2011.CrossRefGoogle Scholar
  36. 36.
    Collins R, O’Hanlon E, O’Neill D. Therapeutic stroke: resolution of central post-stroke pain after a second stroke. J Am Geriatr Soc. 1997;45(4):532.PubMedCrossRefGoogle Scholar
  37. 37.
    Lopez JA, Torres LM, Gala F, Iglesias I. Spinal cord stimulation and thalamic pain: long-term results of eight cases. Neuromodulation. 2009;12:240–3.PubMedCrossRefGoogle Scholar
  38. 38.
    Chung CS, Caplan LR, Han W, Pessin MS, Lee KH, Kim JM. Thalamic haemorrhage. Brain. 1996;119(Pt 6):1873–86.PubMedCrossRefGoogle Scholar
  39. 39.
    Ohye C. Stereotactic treatment of central pain. Stereotact Funct Neurosurg. 1998;70(2–4):71–6.PubMedCrossRefGoogle Scholar
  40. 40.
    Hassler R, Riechert T. Klinische und anatomische Befunde bei sterotaktischen Schmerz-operationen im Thalamus. Archiv für Psychiatrie und Zeitschrift f d ges Neurologie. 1959;200:93–122.Google Scholar
  41. 41.
    Levin G. Electrical stimulation of the globus pallidus and thalamus. J Neurosurg. 1966;24(Suppl. 10):415–21.Google Scholar
  42. 42.
    Koszewski W, Jarosz J, Pernak-De Gast J. Stereotactic posterior capsulo-lentiform deafferentation as an effective treatment in central post-stroke pain. A new surgical method for intractable central pain control? Pain Clinic. 2003;15:115–23.CrossRefGoogle Scholar
  43. 43.
    Dierssen G, Odoriz B, Hernando C. Sensory and motor responses to stimulation of the posterior cingulate cortex in man. J Neurosurg. 1969;31(4):435–40.PubMedCrossRefGoogle Scholar
  44. 44.
    Hamby WB. Reversible central pain. Arch Neurol. 1961;5:528–32.PubMedCrossRefGoogle Scholar
  45. 45.
    Fukaya C, Katayama Y, Yamamoto T, Kobayashi K, Kasai M, Oshima H. Motor cortex stimulation in patients with post-stroke pain: conscious somatosensory response and pain control. Neurol Res. 2003;25(2):153–6.PubMedCrossRefGoogle Scholar
  46. 46.
    Chalah MA, Ayache SS, Riachi N, Ahdab R. Permanent reversal of essential tremor following a frontal lobe stroke. J Neurol Sci. 2015;354(1–2):133–4.PubMedCrossRefGoogle Scholar
  47. 47.
    Constantino AE, Louis ED. Unilateral disappearance of essential tremor after cerebral hemispheric infarct. J Neurol. 2003;250(3):354–5.PubMedCrossRefGoogle Scholar
  48. 48.
    Dupuis MJ, Evrard FL, Jacquerye PG, Picard GR, Lermen OG. Disappearance of essential tremor after stroke. Mov Disord. 2010;25(16):2884–7.PubMedCrossRefGoogle Scholar
  49. 49.
    Kim JS, Park JW, Kim WJ, Kim HT, Kim YI, Lee KS. Disappearance of essential tremor after frontal cortical infarct. Mov Disord. 2006;21(8):1284–5.PubMedCrossRefGoogle Scholar
  50. 50.
    Le Pira F, Giuffrida S, Panetta MR, Lo Bartolo ML, Politi G. Selective disappearance of essential tremor after ischaemic stroke. Eur J Neurol. 2004;11(6):422–3.PubMedCrossRefGoogle Scholar
  51. 51.
    Mochizuki H, Ugawa Y. Disappearance of essential tremor after stroke: which fiber of cerebellar loops is involved in posterior limb of the internal capsule? Movement Dis. 2011;26:1577.PubMedCrossRefGoogle Scholar
  52. 52.
    Jang SH, Seo JP. Differences of the medial lemniscus and spinothalamic tract according to the cortical termination areas: a diffusion tensor tractography study. Somatosens Mot Res. 2015;32(2):67–71.PubMedCrossRefGoogle Scholar
  53. 53.
    Branco DM, Coelho TM, Branco BM, Schmidt L, Calcagnotto ME, Portuguez M, Neto EP, Paglioli E, Palmini A, Lima JV, Da Costa JC. Functional variability of the human cortical motor map: electrical stimulation findings in perirolandic epilepsy surgery. J Clin Neurophysiol. 2003;20(1):17–25.PubMedCrossRefGoogle Scholar
  54. 54.
    Nii Y, Uematsu S, Lesser RP, Gordon B. Does the central sulcus divide motor and sensory functions? Cortical mapping of human hand areas as revealed by electrical stimulation through subdural grid electrodes. Neurology. 1996;46(2):360–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Tanriverdi T, Al-Jehani H, Poulin N, Olivier A. Functional results of electrical cortical stimulation of the lower sensory strip. J Clin Neurosci. 2009;16(9):1188–94.PubMedCrossRefGoogle Scholar
  56. 56.
    An JY, Song IU, Kim SH, Kim YI, Lee KS, Kim JS. Cheiro-oral syndrome in a patient from a cortical infarction in the midfrontal gyrus. Eur Neurol. 2008;59(3–4):219–20.PubMedCrossRefGoogle Scholar
  57. 57.
    Penfield W, Jasper H. Epilepsy and the functional anatomy of the human brain. 3rd ed. Little, Brown: Boston; 1954.Google Scholar
  58. 58.
    Lenz FA, Casey KL, Jones EG, WillisWD. The human pain system: experimental and clinical perspectives. Cambridge: Cambridge University Press; 2010.CrossRefGoogle Scholar
  59. 59.
    Bastuji H, Frot M, Mazza S, Perchet C, Magnin M, Garcia-Larrea L. Thalamic responses to nociceptive-specific input in humans: functional dichotomies and thalamo-cortical connectivity. Cereb Cortex. 2016;26(6):2663–76.PubMedCrossRefGoogle Scholar
  60. 60.
    Krause T, Brunecker P, Pittl S, Taskin B, Laubisch D, Winter B, Lentza ME, Malzahn U, Villringer K, Villringer A, Jungehulsing GJ. Thalamic sensory strokes with and without pain: differences in lesion patterns in the ventral posterior thalamus. J Neurol Neurosurg Psychiatry. 2012;83(8):776–84.PubMedCrossRefGoogle Scholar
  61. 61.
    Montes C, Magnin M, Maarrawi J, Frot M, Convers P, Mauguière F, Garcia-Larrea L. Thalamic thermo-algesic transmission: ventral posterior (VP) complex versus VMpo in the light of a thalamic infarct with central pain. Pain. 2005;113(1-2):223–32.PubMedCrossRefGoogle Scholar
  62. 62.
    Canavero S, Bonicalzi V. Role of primary somatosensory cortex in the coding of pain. Pain. 2013;154(7):1156–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Ro T, Farnè A, Johnson RM, Wedeen V, Chu Z, Wang ZJ, Hunter JV, Beauchamp MS. Feeling sounds after a thalamic lesion. Ann Neurol. 2007;62(5):433–41.Google Scholar
  64. 64.
    Harris KD, Mrsic-Flogel TD. Cortical connectivity and sensory coding. Nature. 2013;503:51–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Kubota Y, Karube F, Nomura M, Kawaguchi Y. The diversity of cortical inhibitory synapses. Front Neural Circuits. 2016;10:27.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Naka A, Adesnik H. Inhibitory circuits in cortical layer 5. Front Neural Circuits. 2016;10:35.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Tremblay R, Lee S, Rudy B. GABAergic interneurons in the neocortex: from cellular properties to circuits. Neuron. 2016;91:260–92.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Treveleyan AJ. Do cortical circuits need protecting from themselves? Trends Neurosci. 2016;39(8):502–11.CrossRefGoogle Scholar
  69. 69.
    Alitto HJ, Usrey WM. Dissecting the dynamics of corticothalamic feedback. Neuron. 2015;86:605–7.PubMedCrossRefGoogle Scholar
  70. 70.
    Alonso JM, Swadlow HA. Thalamus controls recurrent cortical dynamics. Nat Neurosci. 2015;18:1703–4.PubMedCrossRefGoogle Scholar
  71. 71.
    Dhruv NT. Rethinking canonical cortical circuits. Nat Neurosci. 2015;18(11):1538.PubMedCrossRefGoogle Scholar
  72. 72.
    Harris KD. Top-down control of cortical state. Neuron. 2013;79:408–9.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Brown RE, McKenna JT. Turning a negative into a positive: ascending GABAergic control of cortical activation and arousal. Front Neurol. 2015;6:135.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Greenspan JD, Joy SE, McGillis SL, Checkosky CM, Bolanowski SJ. A longitudinal study of somesthetic perceptual disorders in an individual with a unilateral thalamic lesion. Pain. 1997;72(1–2):13–25.PubMedCrossRefGoogle Scholar
  75. 75.
    Attal N, Brasseur L, Chauvin M, Bouhassira D. A case of ‘pure’ dynamic mechano-allodynia due to a lesion of the spinal cord: pathophysiological considerations. Pain. 1998;75(2–3):399–404.PubMedCrossRefGoogle Scholar
  76. 76.
    Ducreux D, Attal N, Parker F, Bouhassira D. Mechanisms of central neuropathic pain: a combined psychophysical and fMRI study in syringomyelia. Brain. 2006;129(Pt 4):963–76.PubMedCrossRefGoogle Scholar
  77. 77.
    Hatem SM, Attal N, Ducreux D, Gautron M, Parker F, Plaghki L, Bouhassira D. Clinical, functional and structural determinants of central pain in syringomyelia. Brain. 2010;133(11):3409–22.PubMedCrossRefGoogle Scholar
  78. 78.
    Attal N, Gaudé V, Brasseur L, Dupuy M, Guirimand F, Parker F, Bouhassira D. Intravenous lidocaine in central pain: a double-blind, placebo-controlled, psychophysical study. Neurology. 2000;54(3):564–74.PubMedCrossRefGoogle Scholar
  79. 79.
    Attal N, Guirimand F, Brasseur L, Gaude V, Chauvin M, Bouhassira D. Effects of IV morphine in central pain: a randomized placebo-controlled study. Neurology. 2002;58(4):554–63.PubMedCrossRefGoogle Scholar
  80. 80.
    Sasaki M, Abekura M, Morris S, Kataoka Y, Yoshimura K, Ninomiya K, Iwatsuki K, Yoshimine T. Allodynia corresponding to the levels of cervical cord injury treated by surgical decompression: a report of 3 cases. Surg Neurol. 2009;72(3):281–5.PubMedCrossRefGoogle Scholar
  81. 81.
    Choi JH, Choi JH, Sim JH, Lee S, Ahn HS, Choi SS. Development of tactile allodynia immediately after spinal anesthesia. Pain Med. 2015;16(6):1242–4.PubMedCrossRefGoogle Scholar
  82. 82.
    Kim YS, Anderson M, Park K, Zheng Q, Agarwal A, Gong C, Saijilafu, Young L, He S, LaVinka PC, Zhou F, Bergles D, Hanani M, Guan Y, Spray DC, Dong X. Coupled activation of primary sensory neurons contributes to chronic pain. Neuron. 2016;91(5):1085–96.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Michelsen JJ. Subjective disturbances of the sense of pain from lesions of the cerebral cortex. Res Publ Assoc Res Nerv Ment Dis. 1943;23:86–99.Google Scholar
  84. 84.
    Silver ML. Central pain from cerebral arteriovenous aneurysm. J Neurosurg. 1957;14(1):92–6.PubMedCrossRefGoogle Scholar
  85. 85.
    Di Biagio F. Dolore centrale da lesione sopratalamica regredito con atophanyl. Riv Neurol. 1959;29:476–81.Google Scholar
  86. 86.
    Retif J. Douleur centrale et lesion suprathalamique. Méningiome temporo-pariétal se manifestant par un syndrome algique paroxystique à caractère pseudoradiculaire du membre inférieur controlateral. Acta Neurol Psychiatr Belg. 1963;63:955–69.PubMedGoogle Scholar
  87. 87.
    Gonzales GR, Herskovitz S, Rosenblum M, Foley KM, Kanner R, Brown A, Portenoy RK. Central pain from cerebral abscess: thalamic syndrome in AIDS patients with toxoplasmosis. Neurology. 1992;42(5):1107–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Stoodley MA, Warren JD, Oatey PE. Thalamic syndrome caused by unruptured cerebral aneurysm. Case report. J Neurosurg. 1995;82(2):291–3.Google Scholar
  89. 89.
    Potagas C, Avdelidis D, Singounas E, Missir O, Aessopos A. Episodic pain associated with a tumor in the parietal operculum: a case report and literature review. Pain. 1997;72(1–2):201–8.PubMedCrossRefGoogle Scholar
  90. 90.
    Fukuhara T, McKhann GM II, Santiago P, Eskridge JM, Loeser JD, Winn HR. Resolution of central pain after embolization of an arteriovenous malformation. Case report. J Neurosurg. 1999;90(3):575–9.PubMedCrossRefGoogle Scholar
  91. 91.
    Barraquer-Bordas L, Molet J, Pascual-Sedano B, Català H. Dolor central retardado asociado a hematoma subinsular seguido por tumor parietooccipital. Efecto favorable de la estimulacion cronica del nucleo VPL talamico. Rev Neurol. 1999;29(11):1044–8.PubMedGoogle Scholar
  92. 92.
    Pagni CA, Canavero S. Paroxysmal perineal pain resembling tic douloureux, only symptom of a dorsal meningioma. Ital J Neurol Sci. 1993;14(4):323–4.PubMedCrossRefGoogle Scholar
  93. 93.
    Canavero S, Pagni CA, Bonicalzi V. Transient hyperacute allodynia in Schneider’s syndrome: an irritative genesis? Ital J Neurol Sci. 1995;16(8):555–7.PubMedCrossRefGoogle Scholar
  94. 94.
    Pagni CA, Canavero S. Functional thalamic depression in a case of reversible central pain due to a spinal intramedullary cyst. Case report. J Neurosurg. 1995;83(1):163–5.PubMedCrossRefGoogle Scholar
  95. 95.
    Canavero S, Bonicalzi V. Reversible central pain. Neurol Sci. 2001;22(3):271–3.PubMedCrossRefGoogle Scholar
  96. 96.
    Bonicalzi V, Graziano A, Roero C, Canavero S. Reversible, hyperacute allodynia after evacuation of a cervical epidural hematoma. J Pain Symptom Manage. 2012;43(2):e9–11.PubMedCrossRefGoogle Scholar
  97. 97.
    Schott GD. Delayed onset and resolution of pain: some observations and implications. Brain. 2001;124(Pt 6):1067–76.Google Scholar
  98. 98.
    DeSouza DD, Davis KD, Hodaie M. Reversal of insular and microstructural nerve abnormalities following effective surgical treatment for trigeminal neuralgia. Pain. 2015;156(6):1112–23.PubMedGoogle Scholar
  99. 99.
    Carrillo-Ruiz JD, Soto-Barraza JC, Fuentes-Manzo A, Kassian A, Becerra-Escobedo G, Velasco F, Frade-García A. Amelioration of chronic neuropathic pain and motor deficit following removal of lumbar vertebroplasty intradural cement. Clin Neurol Neurosurg. 2013;115(6):836–8.PubMedCrossRefGoogle Scholar
  100. 100.
    Gwilym SE, Filippini N, Douaud G, Carr AJ, Tracey I. Thalamic atrophy associated with painful osteoarthritis of the hip is reversible after arthroplasty: a longitudinal voxel-based morphometric study. Arthritis Rheum. 2010;62(10):2930–40.PubMedCrossRefGoogle Scholar
  101. 101.
    Ginanneschi F, Mondelli M, Rossi A. Sensory neuropathy may cause central neuronal reorganization but does not respecify perceptual quality or localization of sensation. Clin J Pain. 2012;28(8):653–7.PubMedCrossRefGoogle Scholar
  102. 102.
    Kiss ZH, Dostrovsky JO, Tasker RR. Plasticity in human somatosensory thalamus as a result of deafferentation. Stereotact Funct Neurosurg. 1994;62(1–4):153–63.PubMedCrossRefGoogle Scholar
  103. 103.
    Lenz FA, Gracely RH, Baker FH, Richardson RT, Dougherty PM. Reorganization of sensory modalities evoked by microstimulation in region of the thalamic principal sensory nucleus in patients with pain due to nervous system injury. J Comp Neurol. 1998;399(1):125–38.PubMedCrossRefGoogle Scholar
  104. 104.
    Davis KD, Kiss ZH, Luo L, Tasker RR, Lozano AM, Dostrovsky JO. Phantom sensations generated by thalamic microstimulation. Nature. 1998;391(6665):385–7.PubMedCrossRefGoogle Scholar
  105. 105.
    Ojemann JG, Silbergeld DL. Cortical stimulation mapping of phantom limb rolandic cortex. Case report. J Neurosurg. 1995;82(4):641–4.PubMedCrossRefGoogle Scholar
  106. 106.
    Woolsey CN, Erickson TC, Gilson WE. Localization in somatic sensory and motor areas of human cerebral cortex as determined by direct recording of evoked potentials and electrical stimulation. J Neurosurg. 1979;51(4):476–506.PubMedCrossRefGoogle Scholar
  107. 107.
    Berić A. Central pain: “new” syndromes and their evaluation. Muscle Nerve. 1993;16(10):1017–24.Google Scholar
  108. 108.
    Stavraky GW. Supersensitivity Following Lesions of the Nervous System. Toronto: University of Toronto Press: 1961.Google Scholar
  109. 109.
    Landry RP, Jacobs VL, Romero-Sandoval EA, DeLeo JA. Propentofylline, a CNS glial modulator does not decrease pain in post-herpetic neuralgia patients: in vitro evidence for differential responses in human and rodent microglia and macrophages. Exp Neurol. 2012;234(2):340–50.PubMedCrossRefGoogle Scholar
  110. 110.
    Martinez V, Szekely B, Lemarié J, Martin F, Gentili M, Ben Ammar S, Lepeintre JF, Garreau de Loubresse C, Chauvin M, Bouhassira D, Fletcher D. The efficacy of a glial inhibitor, minocycline, for preventing persistent pain after lumbar discectomy: a randomized, double-blind, controlled study. Pain. 2013;154(8):1197–203.PubMedCrossRefGoogle Scholar
  111. 111.
    Kwok YH, Swift JE, Gazerani P, Rolan P. A double-blind, randomized, placebo-controlled pilot trial to determine the efficacy and safety of ibudilast, a potential glial attenuator, in chronic migraine. J Pain Res. 2016;9:899–907.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Hübscher M, Moloney N, Leaver A, Rebbeck T, McAuley JH, Refshauge KM. Relationship between quantitative sensory testing and pain or disability in people with spinal pain—a systematic review and meta-analysis. Pain. 2013;154(9):1497–504.PubMedCrossRefGoogle Scholar
  113. 113.
    Mohajerani MH, Aminoltejari K, Murphy TH. Targeted mini-strokes produce changes in interhemispheric sensory signal processing that are indicative of disinhibition within minutes. Proc Natl Acad Sci U S A. 2011;108(22):E183–91.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Makin TR, Scholz J, Henderson Slater D, Johansen-Berg H, Tracey I. Reassessing cortical reorganization in the primary sensorimotor cortex following arm amputation. Brain. 2015;138(Pt 8):2140–6.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Jutzeler CR, Curt A, Kramer JL. Relationship between chronic pain and brain reorganization after deafferentation: a systematic review of functional MRI findings. Neuroimage Clin. 2015a;9:599–606.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Spitzer NC. Neurotransmitter switching? No surprise. Neuron. 2015;86:1131–44.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Segerdahl AR, Mezue M, Okell TW, Farrar JT, Tracey I. The dorsal posterior insula subserves a fundamental role in human pain. Nat Neurosci. 2015;18(4):499–500.PubMedCrossRefGoogle Scholar
  118. 118.
    Nieuwenhuys R. The insular cortex: a review. Prog Brain Res. 2012;195:123–63.PubMedCrossRefGoogle Scholar
  119. 119.
    Davis KD, Bushnell MC, Iannetti GD, St Lawrence K, Coghill R. Evidence against pain specificity in the dorsal posterior insula. F1000Res. 2015;4:362.PubMedPubMedCentralGoogle Scholar
  120. 120.
    Starr CJ, Sawaki L, Wittenberg GF, Burdette JH, Oshiro Y, Quevedo AS, Coghill RC. Roles of the insular cortex in the modulation of pain: insights from brain lesions. J Neurosci. 2009;29(9):2684–94.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Feinstein JS, Khalsa SS, Salomons TV, Prkachin KM, Frey-Law LA, Lee JE, Tranel D, Rudrauf D. Preserved emotional awareness of pain in a patient with extensive bilateral damage to the insula, anterior cingulate, and amygdala. Brain Struct Funct. 2016;221(3):1499–511.PubMedCrossRefGoogle Scholar
  122. 122.
    Khalsa SS, Rudrauf D, Feinstein JS, Tranel D. The pathways of interoceptive awareness. Nat Neurosci. 2009;12(12):1494–6.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Philippi CL, Feinstein JS, Khalsa SS, Damasio A, Tranel D, Landini G, Williford K, Rudrauf D. Preserved self-awareness following extensive bilateral brain damage to the insula, anterior cingulate, and medial prefrontal cortices. PLoS One. 2012;7(8):e38413.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Damasio A, Damasio H, Tranel D. Persistence of feelings and sentience after bilateral damage of the insula. Cereb Cortex. 2013;23(4):833–46.PubMedCrossRefGoogle Scholar
  125. 125.
    Couto B, Adolfi F, Sedeño L, Salles A, Canales-Johnson A, Alvarez-Abut P, Garcia-Cordero I, Pietto M, Bekinschtein T, Sigman M, Manes F, Ibanez A. Disentangling interoception: insights from focal strokes affecting the perception of external and internal milieus. Front Psych. 2015;6:503.Google Scholar
  126. 126.
    Birklein F, Rolke R, Müller-Forell W. Isolated insular infarction eliminates contralateral cold, cold pain, and pinprick perception. Neurology. 2005;65(9):1381.PubMedCrossRefGoogle Scholar
  127. 127.
    Cattaneo L, Chierici E, Cucurachi L, Cobelli R, Pavesi G. Posterior insular stroke causing selective loss of contralateral nonpainful thermal sensation. Neurology. 2007;68(3):237.PubMedCrossRefGoogle Scholar
  128. 128.
    Hiraga A, Sakakibara R, Mizobuchi K, Asahina M, Kuwabara S, Hayashi Y, Hattori T. Putaminal hemorrhage disrupts thalamocortical projection to secondary somatosensory cortex: case report. J Neurol Sci. 2005;231(1-2):81–3.PubMedCrossRefGoogle Scholar
  129. 129.
    Frot M, Magnin M, Mauguière F, Garcia-Larrea L. Cortical representation of pain in primary sensory-motor areas (S1/M1)—a study using intracortical recordings in humans. Hum Brain Mapp. 2013;34(10):2655–68.PubMedCrossRefGoogle Scholar
  130. 130.
    Mochizuki H, Kakigi R. Central mechanisms of itch. Clin Neurophysiol. 2015;126(9):1650–60.PubMedCrossRefGoogle Scholar
  131. 131.
    Inui K, Wang X, Qiu Y, Nguyen BT, Ojima S, Tamura Y, Nakata H, Wasaka T, Tran TD, Kakigi R. Pain processing within the primary somatosensory cortex in humans. Eur J Neurosci. 2003;18:2859–66.PubMedCrossRefGoogle Scholar
  132. 132.
    Kanda M, Nagamine T, Ikeda A, Ohara S, Kunieda T, Fujiwara N, Yazawa S, Sawamoto N, Matsumoto R, Taki W, Shibasaki H. Primary somatosensory cortex is actively involved in pain processing in human. Brain Res. 2000;853:282–9.PubMedCrossRefGoogle Scholar
  133. 133.
    Nakata H, Tamura Y, Sakamoto K, Akatsuka K, Hirai M, Inui K, Hoshiyama M, Saitoh Y, Yamamoto T, Katayama Y, Kakigi R. Evoked magnetic fields following noxious laser stimulation of the thigh in humans. Neuroimage. 2008;42:858–68.PubMedCrossRefGoogle Scholar
  134. 134.
    Nir RR, Lev R, Moont R, Granovsky Y, Sprecher E, Yarnitsky D. Neurophysiology of the cortical pain network: revisiting the role of S1 in subjective pain perception via standardized low-resolution brain electromagnetic tomography (sLORETA). J Pain. 2008;9(11):1058–69.PubMedCrossRefGoogle Scholar
  135. 135.
    Poreisz C, Antal A, Boros K, Brephol N, Csifcsak G, Paulus W. Attenuation of N2 amplitude of laser-evoked potentials by theta burst stimulation of primary somatosensory cortex. Exp Brain Res. 2008;185:611–21.PubMedCrossRefGoogle Scholar
  136. 136.
    Gross J, Schnitzler A, Timmermann L, Ploner M. Gamma oscillations in human primary somatosensory cortex reflect pain perception. PLoS Biol. 2007;5(5):e133.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Ohara S, Crone NE, Weiss N, Treede RD, Lenz FA. Cutaneous painful laser stimuli evoke responses recorded directly from primary somatosensory cortex in awake humans. J Neurophysiol. 2004;91:2734–46.PubMedCrossRefGoogle Scholar
  138. 138.
    Liu CC, Franaszczuk P, Crone NE, Jouny C, Lenz FA. Studies of properties of “Pain Networks” as predictors of targets of stimulation for treatment of pain. Front Integr Neurosci. 2011;5:80.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Erpelding N, Moayedi M, Davis KD. Cortical thickness correlates of pain and temperature sensitivity. Pain. 2012;153(8):1602–9.PubMedCrossRefGoogle Scholar
  140. 140.
    Valentini E, Hu L, Chakrabarti B, Hu Y, Aglioti SM, Iannetti GD. The primary somatosensory cortex largely contributes to the early part of the cortical response elicited by nociceptive stimuli. Neuroimage. 2012;59(2):1571–81.PubMedCrossRefGoogle Scholar
  141. 141.
    Marshall J. Sensory disturbances in cortical wounds with special reference to pain. J Neurol Neurosurg Psychiatry. 1951;14(3):187–204.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Ploner M, Freund HJ, Schnitzler A. Pain affect without pain sensation in a patient with a postcentral lesion. Pain. 1999;81(1–2):211–4.PubMedCrossRefGoogle Scholar
  143. 143.
    Mancini F, Haggard P, Iannetti GD, Longo MR, Sereno MI. Fine-grained nociceptive maps in primary somatosensory cortex. J Neurosci. 2012;32(48):17155–62.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Omori S, Isose S, Otsuru N, Nishihara M, Kuwabara S, Inui K, Kakigi R. Somatotopic representation of pain in the primary somatosensory cortex (S1) in humans. Clin Neurophysiol. 2013;124(7):1422–30.PubMedCrossRefGoogle Scholar
  145. 145.
    Pugnaghi M, Meletti S, Castana L, Francione S, Nobili L, Mai R, Tassi L. Features of somatosensory manifestations induced by intracranial electrical stimulations of the human insula. Clin Neurophysiol. 2011;122(10):2049–58.PubMedCrossRefGoogle Scholar
  146. 146.
    Denis DJ, Marouf R, Rainville P, Bouthillier A, Nguyen DK. Effects of insular stimulation on thermal nociception. Eur J Pain. 2016;20(5):800–10.PubMedCrossRefGoogle Scholar
  147. 147.
    Gazzola V, Spezio ML, Etzel JA, Castelli F, Adolphs R, Keysers C. Primary somatosensory cortex discriminates affective significance in social touch. Proc Natl Acad Sci U S A. 2012;109(25):E1657–66.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Avanzini P, Abdollahi RO, Sartori I, Caruana F, Pelliccia V, Casaceli G, Mai R, Lo Russo G, Rizzolatti G, Orban GA. Four-dimensional maps of the human somatosensory system. Proc Natl Acad Sci U S A. 2016;113(13):E1936–43.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Liang M, Mouraux A, Iannetti GD. Parallel processing of nociceptive and non-nociceptive somatosensory information in the human primary and secondary somatosensory cortices: evidence from dynamic causal modeling of functional magnetic resonance imaging data. J Neurosci. 2011;31(24):8976–85.PubMedCrossRefGoogle Scholar
  150. 150.
    Liang M, Mouraux A, Iannetti GD. Bypassing primary sensory cortices—a direct thalamocortical pathway for transmitting salient sensory information. Cereb Cortex. 2013;23(1):1–11.PubMedCrossRefGoogle Scholar
  151. 151.
    Salomons TV, Iannetti GD, Liang M, Wood JN. The “Pain Matrix” in pain-free individuals. JAMA Neurol. 2016;73(6):755–6.PubMedCrossRefGoogle Scholar
  152. 152.
    Smallwood RF, Laird AR, Ramage AE, Parkinson AL, Lewis J, Clauw DJ, Williams DA, Schmidt-Wilcke T, Farrell MJ, Eickhoff SB, Robin DA. Structural brain anomalies and chronic pain: a quantitative meta-analysis of gray matter volume. J Pain. 2013;14(7):663–75.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Palomero-Gallagher N, Eickhoff SB, Hoffstaedter F, Schleicher A, Mohlberg H, Vogt BA, Amunts K, Zilles K. Functional organization of human subgenual cortical areas: relationship between architectonical segregation and connectional heterogeneity. Neuroimage. 2015;115:177–90.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Wager TD, Atlas LY, Botvinick MM, Chang LJ, Coghill RC, Davis KD, Iannetti GD, Poldrack RA, Shackman AJ, Yarkoni T. Pain in the ACC? Proc Natl Acad Sci U S A. 2016;113(18):E2474–5.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Iannetti GD, Mouraux A. From the neuromatrix to the pain matrix (and back). Exp Brain Res. 2010;205(1):1–12.PubMedCrossRefGoogle Scholar
  156. 156.
    Gibbs FA, Gibbs EL, Lennox WG. The likeliness of the cortical dysrhythmias of schizophrenia and psychomotor epilepsy. Am J Psychiatry. 1938;95:255–69.CrossRefGoogle Scholar
  157. 157.
    Jones SR. When brain rhythms aren’t ‘rhythmic’: implication for their mechanisms and meaning. Curr Opin Neurobiol. 2016;40:72–80.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Pockett S, Holmes MD. Intracranial EEG power spectra and phase synchrony during consciousness and unconsciousness. Conscious Cogn. 2009;18(4):1049–55.PubMedCrossRefGoogle Scholar
  159. 159.
    Merker BH. Cortical gamma oscillations: details of their genesis preclude a role in cognition. Front Comput Neurosci. 2016;10:78.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Ray S, Maunsell JH. Do gamma oscillations play a role in cerebral cortex? Trends Cogn Sci. 2015;19(2):78–85.PubMedCrossRefGoogle Scholar
  161. 161.
    Michail G, Dresel C, Witkovský V, Stankewitz A, Schulz E. Neuronal oscillations in various frequency bands differ between pain and touch. Front Hum Neurosci. 2016;10:182.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Michels L, Moazami-Goudarzi M, Jeanmonod D. Correlations between EEG and clinical outcome in chronic neuropathic pain: surgical effects and treatment resistance. Brain Imaging Behav. 2011;5(4):329–48.PubMedCrossRefGoogle Scholar
  163. 163.
    Jensen MP, Sherlin LH, Gertz KJ, Braden AL, Kupper AE, Gianas A, Howe JD, Hakimian S. Brain EEG activity correlates of chronic pain in persons with spinal cord injury: clinical implications. Spinal Cord. 2013;51(1):55–8.PubMedCrossRefGoogle Scholar
  164. 164.
    Basha D, Dostrovsky JO, Lopez Rios AL, Hodaie M, Lozano AM, Hutchison WD. Beta oscillatory neurons in the motor thalamus of movement disorder and pain patients. Exp Neurol. 2014;261:782–90.PubMedCrossRefGoogle Scholar
  165. 165.
    Vuckovic A, Hasan MA, Fraser M, Conway BA, Nasseroleslami B, Allan DB. Dynamic oscillatory signatures of central neuropathic pain in spinal cord injury. J Pain. 2014;15(6):645–55.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Vuckovic A, Hasan MA, Osuagwu B, Fraser M, Allan DB, Conway BA, Nasseroleslami B. The influence of central neuropathic pain in paraplegic patients on performance of a motor imagery based brain computer interface. Clin Neurophysiol. 2015;126(11):2170–80.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Hassan MA, Fraser M, Conway BA, Allan DB, Vuckovic A. The mechanism of neurofeedback training for treatment of central neuropathic pain in paraplegia: a pilot study. BMC Neurol. 2015;15:200.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Hassan MA, Fraser M, Conway BA, Allan DB, Vučković A. Reversed cortical over-activity during movement imagination following neurofeedback treatment for central neuropathic pain. Clin Neurophysiol. 2016;127(9):3118–27.CrossRefGoogle Scholar
  169. 169.
    Passingham RE, Rowe JB, Sakai K. Has brain imaging discovered anything new about how the brain works? Neuroimage. 2013;66:142–50.PubMedCrossRefGoogle Scholar
  170. 170.
    Eklund A, Nichols TE, Knutsson H. Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates. Proc Natl Acad Sci U S A. 2016;113(28):7900–5. Erratum in: Proc Natl Acad Sci U S A. 2016;113(33):E4929.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Eliasmith C, Trujillo O. The use and abuse of large-scale brain models. Curr Opin Neurobiol. 2014;25:1–6.PubMedCrossRefGoogle Scholar
  172. 172.
    Goense J, Bohraus Y, Logothetis NK. fMRI at high spatial resolution: implications for BOLD-models. Front Comput Neurosci. 2016;10:66.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Uddin LQ. Complex relationships between structural and functional brain connectivity. Trends Cogn Sci. 2013;17(12):600–2.PubMedCrossRefGoogle Scholar
  174. 174.
    Papo D, Zanin M, Buldú JM. Reconstructing functional brain networks: have we got the basics right? Front Hum Neurosci. 2014;8:107.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Papo D, Zanin M, Martínez JH, Buldú JM. Beware of the small-world neuroscientist! Front Hum Neurosci. 2016;10:96.PubMedPubMedCentralGoogle Scholar
  176. 176.
    Nazarova M, Blagovechtchenski E. Modern brain mapping—what do we map nowadays? Front Psych. 2015;6:89.Google Scholar
  177. 177.
    Tong Y, Hocke LM, Fan X, Janes AC, Bd F. Can apparent resting state connectivity arise from systemic fluctuations? Front Hum Neurosci. 2015;9:285.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Johansen-Berg H. Human connectomics. What will the future demand? Neuroimage. 2013;80:541–4.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Kolesar TA, Fiest KM, Smith SD, Kornelsen J. Assessing nociception by fMRI of the human spinal cord: a systematic review. Magn Reson Insights. 2015;8(Suppl 1):31–9.PubMedPubMedCentralGoogle Scholar
  180. 180.
    Kalita J, Kumar B, Misra UK, Pradhan PK. Central post stroke pain: clinical, MRI, and SPECT correlation. Pain Med. 2011;12(2):282–8.PubMedCrossRefGoogle Scholar
  181. 181.
    Hong JH, Choi BY, Chang CH, Kim SH, Jung YJ, Lee DG, Kwon YH, Jang SH. The prevalence of central poststroke pain according to the integrity of the spino-thalamo-cortical pathway. Eur Neurol. 2012;67(1):12–7.PubMedCrossRefGoogle Scholar
  182. 182.
    Deppe M, Müller D, Kugel H, Ruck T, Wiendl H, Meuth SG. DTI detects water diffusion abnormalities in the thalamus that correlate with an extremity pain episode in a patient with multiple sclerosis. Neuroimage Clin. 2013;2:258–62.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Peyron R, Faillenot I, Pomares FB, Le Bars D, Garcia-Larrea L, Laurent B. Mechanical allodynia in neuropathic pain. Where are the brain representations located? A positron emission tomography (PET) study. Eur J Pain. 2013;17(9):1327–37.PubMedCrossRefGoogle Scholar
  184. 184.
    Yoon EJ, Kim YK, Shin HI, Lee Y, Kim SE. Cortical and white matter alterations in patients with neuropathic pain after spinal cord injury. Brain Res. 2013;1540:64–73.PubMedCrossRefGoogle Scholar
  185. 185.
    Widerström-Noga E, Pattany PM, Cruz-Almeida Y, Felix ER, Perez S, Cardenas DD, Martinez-Arizala A. Metabolite concentrations in the anterior cingulate cortex predict high neuropathic pain impact after spinal cord injury. Pain. 2013;154(2):204–12.PubMedCrossRefGoogle Scholar
  186. 186.
    Widerström-Noga E, Cruz-Almeida Y, Felix ER, Pattany PM. Somatosensory phenotype is associated with thalamic metabolites and pain intensity after spinal cord injury. Pain. 2015;156(1):166–74.PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Mole TB, MacIver K, Sluming V, Ridgway GR, Nurmikko TJ. Specific brain morphometric changes in spinal cord injury with and without neuropathic pain. Neuroimage Clin. 2014;5:28–35.PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Gustin SM, Wrigley PJ, Youssef AM, McIndoe L, Wilcox SL, Rae CD, Edden RA, Siddall PJ, Henderson LA. Thalamic activity and biochemical changes in individuals with neuropathic pain after spinal cord injury. Pain. 2014;155(5):1027–36.PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Grabher P, Callaghan MF, Ashburner J, Weiskopf N, Thompson AJ, Curt A, Freund P. Tracking sensory system atrophy and outcome prediction in spinal cord injury. Ann Neurol. 2015;78(5):751–61.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Kim JH, Ahn SH, Cho YW, Kim SH, Jang SH. The relation between injury of the spinothalamocortical tract and central pain in chronic patients with mild traumatic brain injury. J Head Trauma Rehabil. 2015;30(6):E40–6.PubMedCrossRefGoogle Scholar
  191. 191.
    Jutzeler CR, Freund P, Huber E, Curt A, Kramer JL. Neuropathic pain and functional reorganization in the primary sensorimotor cortex after spinal cord injury. J Pain. 2015b;16(12):1256–67.PubMedCrossRefGoogle Scholar
  192. 192.
    Wrigley PJ, Press SR, Gustin SM, Macefield VG, Gandevia SC, Cousins MJ, Middleton JW, Henderson LA, Siddall PJ. Neuropathic pain and primary somatosensory cortex reorganization following spinal cord injury. Pain. 2009;141(1–2):52–9.Google Scholar
  193. 193.
    Flor H, Elbert T, Knecht S, Wienbruch C, Pantev C, Birbaumer N, Larbig W, Taub E. Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature. 1995;375(6531):482–4.Google Scholar
  194. 194.
    Jutzeler CR, Huber E, Callaghan MF, Luechinger R, Curt A, Kramer JL, Freund P. Association of pain and CNS structural changes after spinal cord injury. Sci Rep. 2016;6:18534.PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Widerström-Noga E, Govind V, Adcock JP, Levin BE, Maudsley AA. Subacute pain after traumatic brain injury is associated with lower insular N-acetylaspartate concentrations. J Neurotrauma. 2016;33(14):1380–9.PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Jang SH, Park SM, Kwon HG. Relation between injury of the periaqueductal gray and central pain in patients with mild traumatic brain injury: observational study. Medicine (Baltimore). 2016;95(26):e4017.CrossRefGoogle Scholar
  197. 197.
    Gopalakrishnan R, Burgess RC, Lempka SF, Gale JT, Floden DP, Machado AG. Pain anticipatory phenomena in patients with central poststroke pain: a magnetoencephalography study. J Neurophysiol. 2016;116(3):1387–95.PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Stroman PW, Khan HS, Bosma RL, Cotoi AI, Leung R, Cadotte DW, Fehlings MG. Changes in pain processing in the spinal cord and brainstem after spinal cord injury characterized by functional magnetic resonance imaging. J Neurotrauma. 2016;33:1450–60.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Sergio Canavero
    • 1
  • Vincenzo Bonicalzi
    • 2
  1. 1.HEAVEN/GEMINI International Collaborative GroupTurinItaly
  2. 2.AOUCittà della Salute e della Scienza di Torino, Department of Neurosciences, Rita Levi MontalciniUniversità di TorinoTurinItaly

Personalised recommendations