On Measures for Groups of Trajectories

  • Lionov WiratmaEmail author
  • Marc van Kreveld
  • Maarten Löffler
Conference paper
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)


We present a list of measures for a single trajectory, including measures that require the presence of other trajectories, such as the centrality of a trajectory amidst other trajectories. Then, we introduce three different views in order to extend measures of a single trajectory to a group, namely the representative view, the complete view and the area view. Furthermore, we give measures that exist only for a group of trajectories, like density and formation stability. We also show that it may be possible to define new measures by combining trajectory data with data from other sources, such as the environment where the entities move. Finally, we discuss several tasks: settlement selection, visualization and segmentation, where measures on groups of trajectories are necessary.


Trajectories Groups of trajectories Movement attributes Measures 



Lionov Wiratma is supported by the Ministry of Research, Technology and Higher Education of Indonesia (138.41/E4.4/2015). Marc van Kreveld is partially supported by the Netherlands Organisation for Scientific Research (NWO) under project “More Content with Geometric Content”. Maarten Löffler is partially supported by the Netherlands Organisation for Scientific Research (NWO) under project no. 614.001.504.


  1. Agarwal PK, de Berg M, Gao J, Guibas LJ, Har-Peled S (2005) Staying in the middle: exact and approximate medians in R1 and R2 for moving points. In: Proceedings of the 17th Canadian conference on computational geometry, CCCG’05, University of Windsor, Ontario, Canada, 10–12 Aug 2005, pp 43–46Google Scholar
  2. Alt H, Godau M (1995) Computing the fréchet distance between two polygonal curves. Int J Comput Geom Appl 05(01n02):75–91Google Scholar
  3. Alt H, Behrends B, Blömer J (1995) Approximate matching of polygonal shapes. Ann Math Artif Intell 13(3):251–265CrossRefGoogle Scholar
  4. Anagnostopoulos A, Vlachos M, Hadjieleftheriou M, Keogh EJ, Yu PS (2006) Global distance-based segmentation of trajectories. In: Proceedings of the twelfth ACM SIGKDD international conference on knowledge discovery and data mining, Philadelphia, PA, USA, 20–23 Aug 2006, pp 34–43Google Scholar
  5. Andersson M, Gudmundsson J, Laube P, Wolle T (2007) Reporting leadership patterns among trajectories. In: Proceedings of the 2007 ACM symposium on applied computing (SAC), Seoul, Korea, 11–15 Mar 2007, pp 3–7Google Scholar
  6. Andrienko GL, Andrienko NV, Bak P, Keim DA, Wrobel S (2013) Visual analytics of movement. Springer, BerlinCrossRefGoogle Scholar
  7. Andrienko N, Andrienko G, Pelekis N, Spaccapietra S (2008) Basic concepts of movement data. In: Giannotti F, Pedreschi D (eds) Mobility, data mining and privacy, 1st edn. SpringerGoogle Scholar
  8. Aronov B, Driemel A, van Kreveld MJ, Löffler M, Staals F (2013) Segmentation of trajectories for non-monotone criteria. In: Proceedings of the twenty-fourth annual ACM-SIAM symposium on discrete algorithms, SODA 2013, New Orleans, Louisiana, USA, 6–8 Jan 2013, pp 1897–1911Google Scholar
  9. Beauchamp G (2012) Flock size and density influence speed of escape waves in semipalmated sandpipers. Anim Behav 83(4):1125–1129CrossRefGoogle Scholar
  10. Benhamou S (2004) How to reliably estimate the tortuosity of an animal’s path: straightness, sinuosity, or fractal dimension? J Theor Biol 229(2):209–220CrossRefGoogle Scholar
  11. Benkert M, Gudmundsson J, Hübner F, Wolle T (2008) Reporting flock patterns. Comput Geom 41(3):111–125CrossRefGoogle Scholar
  12. Bento J (2016) A metric for sets of trajectories that is practical and mathematically consistent. CoRR abs/1601.03094Google Scholar
  13. Boinski S, Garber P (2000) On the move: how and why animals travel in groups. Nature/Science. University of Chicago PressGoogle Scholar
  14. Buard E, Brasebin M, IGN S (2011) Visual exploration of large animal trajectories. In: 25th international cartographic conference (ICC11). ICC 2011, 3–8 July 2011 Paris, France, p 7Google Scholar
  15. Buchin K, Buchin M, Gudmundsson J, Löffler M, Luo J (2011a) Detecting commuting patterns by clustering subtrajectories. Int J Comput Geom Appl 21(3):253–282CrossRefGoogle Scholar
  16. Buchin K, Buchin M, van Kreveld MJ, Luo J (2011b) Finding long and similar parts of trajectories. Comput Geom 44(9):465–476CrossRefGoogle Scholar
  17. Buchin M, Driemel A, van Kreveld MJ, Sacristán V (2011c) Segmenting trajectories: a framework and algorithms using spatiotemporal criteria. J Spat Inf Sci 3(1):33–63Google Scholar
  18. Buchin K, Buchin M, van Kreveld MJ, Speckmann B, Staals F (2015) Trajectory grouping structure. JoCG 6(1):75–98Google Scholar
  19. Calenge C, Dray S, Royer-Carenzi M (2009) The concept of animals’ trajectories from a data analysis perspective. Ecol Inform 4(1):34–41CrossRefGoogle Scholar
  20. Dodge S, Weibel R, Lautenschütz AK (2008) Towards a taxonomy of movement patterns. Inf Vis 7(3):240–252CrossRefGoogle Scholar
  21. Giardina I (2008) Collective behavior in animal groups: theoretical models and empirical studies. HFSP J 2(4):205–219CrossRefGoogle Scholar
  22. Giuggioli L, Potts JR, Harris S (2011) Animal interactions and the emergence of territoriality. PLoS Comput Biol 7(3):1–9CrossRefGoogle Scholar
  23. Gudmundsson J, van Kreveld MJ (2006) Computing longest duration flocks in trajectory data. In: Proceedings of 14th ACM international symposium on geographic information systems, ACM-GIS 2006, 10–11 Nov 2006, Arlington. Virginia, USA, pp 35–42Google Scholar
  24. Gudmundsson J, van Kreveld MJ, Staals F (2013) Algorithms for hotspot computation on trajectory data. In: 21st SIGSPATIAL international conference on advances in geographic information systems, SIGSPATIAL 2013, Orlando, FL, USA, 5–8 Nov 2013, pp 134–143Google Scholar
  25. Hanks EM, Hooten MB, Johnson DS, Sterling JT (2011) Velocity-based movement modeling for individual and population level inference. PLoS ONE 6(8):1–17CrossRefGoogle Scholar
  26. Heppner F (1997) Three-dimensional structure and dynamics of bird flocks. In: Parrish JK, Hamner WM (eds) Animal groups in three dimensions: how Species Aggregate, 1st edn. Cambridge University PressGoogle Scholar
  27. Huang Y, Chen C, Dong P (2008) Modeling herds and their evolvements from trajectory data. In: Cova TJ, Miller HJ, Beard K, Frank AU, Goodchild MF (eds) Geographic information science, Proceedings of the 5th international conference, GIScience 2008, Park City, UT, USA, 23–26 Sept 2008. Lecture notes in computer science, vol 5266. Springer, pp 90–105Google Scholar
  28. Hwang S, Liu Y, Chiu J, Lim E (2005) Mining mobile group patterns: A trajectory-based approach. In: Ho TB, Cheung DW, Liu H (eds) Advances in knowledge discovery and data mining, Proceedings of the 9th Pacific-Asia conference, PAKDD 2005, Hanoi, Vietnam, 18–20 May 2005. Lecture notes in computer science, vol 3518. Springer, pp 713–718Google Scholar
  29. Jeung H, Yiu ML, Zhou X, Jensen CS, Shen HT (2008) Discovery of convoys in trajectory databases. PVLDB 1(1):1068–1080Google Scholar
  30. Kalnis P, Mamoulis N, Bakiras S (2005) On discovering moving clusters in spatio-temporal data. In: Medeiros CB, Egenhofer MJ, Bertino E (eds) Advances in spatial and temporal databases, Proceedings of the 9th international symposium, SSTD 2005, Angra dos Reis, Brazil, 22–24 Aug 2005. Lecture notes in computer science, vol 3633. Springer, pp 364–381Google Scholar
  31. van Kreveld M, van Oostrum R, Snoeyink J (1997) Efficient settlement selection for interactive display. In: Auto-Carto XIII Proceedings of the International Symposium on Computer-Assisted Cartography, pp 287–296Google Scholar
  32. van Kreveld M, Löffler M, Staals F, Wiratma L (2016) A refined definition for groups of moving entities and its computation. In: Proceedings of the 27th international symposium on algorithms and computation, ISAAC 2016, 12–14 Dec 2016, Sydney, Australia, pp 48:1–48:12Google Scholar
  33. LaPoint S, Gallery P, Wikelski M, Kays R (2013) Animal behavior, cost-based corridor models, and real corridors. Landsc Ecol 28(8):1615–1630CrossRefGoogle Scholar
  34. Laube P, Dennis T, Forer P, Walker M (2007) Movement beyond the snapshot dynamic analysis of geospatial lifelines. Comput Environ Urban Syst 31(5):481–501CrossRefGoogle Scholar
  35. Lee J, Han J, Whang K (2007) Trajectory clustering: a partition-and-group framework. In: Proceedings of the ACM SIGMOD international conference on management of data, Beijing, China, 12–14 June 2007, pp 593–604Google Scholar
  36. Lee J, Han J, Li X (2008a) Trajectory outlier detection: a partition-and-detect framework. In: Proceedings of the 24th international conference on data engineering, ICDE 2008, 7–12 Apr 2008, Cancún, México, pp 140–149Google Scholar
  37. Lee J, Han J, Li X, Gonzalez H (2008b) TraClass: trajectory classification using hierarchical region-based and trajectory-based clustering. PVLDB 1(1):1081–1094Google Scholar
  38. Li Z, Ding B, Han J, Kays R (2010) Swarm: mining relaxed temporal moving object clusters. PVLDB 3(1):723–734Google Scholar
  39. Liu H, Schneider M (2012) Similarity measurement of moving object trajectories. In: Proceedings of the third ACM SIGSPATIAL international workshop on GeoStreaming, ACM, New York, NY, USA, IWGS ’12, pp 19–22Google Scholar
  40. Mann R, Jepson AD, El-Maraghi TF (2002) Trajectory segmentation using dynamic programming. In: 16th international conference on pattern recognition, ICPR 2002, Quebec, Canada, 11–15 Aug 2002, pp 331–334Google Scholar
  41. Nanni M, Pedreschi D (2006) Time-focused clustering of trajectories of moving objects. J Intell Inf Syst 27(3):267–289CrossRefGoogle Scholar
  42. Peters S, Krisp JM (2010) Density calculation for moving points. In: Proceeding of the 13th AGILE international conference on geographic information science, Guimaraes, Portugal, 11–14 May 2010, pp 43–46Google Scholar
  43. Ranacher P, Tzavella K (2014) How to compare movement? a review of physical movement similarity measures in geographic information science and beyond. Cartogr Geogr Inf Sci 41(3)Google Scholar
  44. Rubner Y, Tomasi C, Guibas LJ (2000) The earth mover’s distance as a metric for image retrieval. Int J Comput Vis 40(2):99–121CrossRefGoogle Scholar
  45. Safi K, Kranstauber B, Weinzierl R, Griffin L, Rees EC, Cabot D, Cruz S, Proaño C, Takekawa JY, Newman SH, Waldenström J, Bengtsson D, Kays R, Wikelski M, Bohrer G (2013) Flying with the wind: scale dependency of speed and direction measurements in modelling wind support in avian flight. Mov Ecol 1(1):4CrossRefGoogle Scholar
  46. Samsonov T, Krivosheina A (2012) Joint generalization of city points and road network for small-scale mapping. In: Proceedings of seventh international conference on geographic information science GIScience, Columbus, Ohio, USA, 18–21 Sept 2012, pp 18–21Google Scholar
  47. Viscido SV, Parrish JK, Grünbaum D (2004) Individual behavior and emergent properties of fish schools: a comparison of observation and theory. Mar Ecol Prog Ser 273:239–249CrossRefGoogle Scholar
  48. Yuan J, Zheng Y, Zhang C, Xie W, Xie X, Sun G, Huang Y (2010) T-drive: driving directions based on taxi trajectories. In: Proceedings of the 18th ACM SIGSPATIAL international symposium on advances in geographic information systems, ACM-GIS 2010, 3–5 Nov 2010, San Jose. CA, USA, pp 99–108Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Lionov Wiratma
    • 1
    • 2
    Email author
  • Marc van Kreveld
    • 1
  • Maarten Löffler
    • 1
  1. 1.Department of Information and Computing SciencesUtrecht UniversityUtrechtThe Netherlands
  2. 2.Department of InformaticsParahyangan Catholic UniversityBandungIndonesia

Personalised recommendations