Skip to main content

Simulation of Laser Cutting

  • Chapter
  • First Online:
The Theory of Laser Materials Processing

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 119))

  • 2039 Accesses

Abstract

Laser cutting is a thermal separation process widely used in shaping and contour cutting applications. There are, however, gaps in understanding the dynamics of the process, especially issues related to cut quality. This work describes the advances in fundamental physical modelling and process monitoring of laser cutting, as well as time varying processes such as contour cutting. Diagnosis of ripple and dross formation is advanced to observe the melt flow and its separation simultaneously as well as the spatial shape of the cut kerf. The cutting process is described with a spatial three-dimensional Free Boundary Problem for the motion of one phase boundary. In such dissipative dynamical systems a finite dimensional inertial manifold exists which contains the attractor of the system. The existence of a finite dimensional inertial manifold means that the motion of a finite set of degrees of freedom can give a good approximation to the complete solution. Asymptotic methods are used to identify the degrees of freedom, and integral methods are applied to derive their equations of motion. Experimental findings about the morphology of ripple formation guide the modelling approach and motivate the investigation of what is known as the one phase problem. Solving inverse problems and the properties of the thermal boundary layers are discussed. The model reproduces details of the U-shaped ripples evolving at the cut surface. In discussion of what is known as the two phase problem the properties of the melt flow are included. The additional degrees of freedom are the melt film thickness, the mass flow and the temperature at the melt film surface. The onset of evaporation and the increase in capillary forces are the two physical phenomena relevant to the build-up of adherent dross. The dynamic model predicts a modulation frequency for the laser power that leads to almost complete suppression of adherent dross in contour cutting. Heat transport in thin film flow is investigated demonstrating how to control the error of reduced models by spectral methods. To find the properties of the gas flow leading to melt ejection is a fundamental task in cutting. The interaction of the gas flow with the condensed phase is mediated by two quantities, namely the pressure gradient and the shear stress along the liquid surface. Results of a detailed analysis of the momentum boundary layer of the gas flow is compared with numerical calculations using the Euler equations as well as the viscous effects described by the compressible Navier-Stokes equations. Deflection and separation of a supersonic gas jet emanating from a nozzle and propagating into the cut kerf is investigated using Schlieren photography and theoretical analysis. Looking for the different situations present in cutting and trepanning, the formation of horizontal structures in the ripple pattern in the cut is discussed. The effect of design and alignment parameters on nozzle performance in cutting are investigated and two dominant effects are discussed, namely the feedback of the gas flow into the nozzle and deflection of the gas flow away from the cutting front. Discussion of the onset of dross formation is extended to include compressible gas flow in the simulation such that the nozzle pressure enters the calculation of the processing domain for a dross-free cut.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Friedrich R, Radons G, Ditzinger T, Henning A (2000) Ripple formation through an interface instability from moving growth and erosion sources. Phys Rev Lett 85(23):4884–7

    Article  ADS  Google Scholar 

  2. Makashev NK, Asmolov NS, Blinkov VV, Boris AY, Buzykin OG, Burmistrov AV, Gryaznov MR, Makarov VA (1992) Gas hydrodynamics of metal cutting by CW laser radiation in a rare gas. Sov J Quantum Electron 22:847–852

    Article  ADS  Google Scholar 

  3. Nemchinsky VA (1997) Dross formation and heat transfer during plasma arc cutting. J Phys D: Appl Phys 30:566–2572

    Google Scholar 

  4. Poprawe R, König W (2001) Modeling, monitoring and control in high quality laser cutting. Ann CIRP 50(1):137–140

    Article  Google Scholar 

  5. Klimentov SM, Garnov SV, Kononenko TV, Konov VI, Pivovarov PA, Dausinger F (1999) High rate deep channel ablative formation by picosecond-nanosecond combined laser pulses. Appl Phys A 69:633–636

    Article  ADS  Google Scholar 

  6. Hellrung D, Gillner A, Poprawe R (1997) Laser beam removal of micro-structures with Nd:YAG lasers. In: Processing Lasers in Material Processing Laser’97, vol 3097. SPIE, Munich, pp 267–273

    Google Scholar 

  7. Schulz W, Poprawe R (2000) Manufacturing with Novel high power Diode lasers. IEEE JSTQE 6(4):696–705

    Google Scholar 

  8. Jurman LA, McCready MJ (1989) Study of waves on thin liquid films sheared by turbulent gas flow. Phys Fluids A 1:522–536

    Article  ADS  MATH  Google Scholar 

  9. Hsieh DY (1990) Mechanism for instability of fluid flow down an inclined plane. Phys Fluids A 11145–1148

    Google Scholar 

  10. Miesen R, Boersma BJ (1995) Hydrodynamic stability of a shared liquid film. J Fluid Mech 301:175–202

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Oron A, Davies SH, Bankoff SG (1997) Long-scale evolution of thin liquid films. Rev Mod Phys 69:931–980

    Article  ADS  Google Scholar 

  12. Aksel N (2000) Influence of the capillarity on a creeping film flow down an inclined plane with an edge. Arch Appl Mech 70:81–90

    Article  MATH  Google Scholar 

  13. Scholle M, Aksel N (2001) An exact solution of viscocapillary flow in an inclined channel. Z Angew Math Phys 52:749–769

    Article  MathSciNet  MATH  Google Scholar 

  14. de Gennes PG (1985) Wetting: statics and dynamics. Rev Mod Phys 57:827–863

    Article  ADS  Google Scholar 

  15. Schäffer E, Wong P (1998) Dynamics of contact line pinning in capillary rise and fall. Phys Rev Lett 80:3069–3072

    Article  ADS  Google Scholar 

  16. Pritchard WG (1984) Some viscous-dominated flows. In: Ciarlet PG, Roseau M (eds) Trends and applications of pure mathematics to mechanics. Lecture notes in physics, vol 195. Springer, Berlin, pp 305–332

    Google Scholar 

  17. Pritchard WG, Saavedra P, Scott LR, Tavener SJ (1994) Theoretical issues in the modelling of viscous free-surface flows. In: Brown RA, Davies SH (eds) Free boundaries in viscous flows. Springer, New York, pp 29–48

    Chapter  Google Scholar 

  18. Eggers J (1997) Tropfenbildung. Phys Bl 53:431–434

    Article  Google Scholar 

  19. Eggers J (1997) Nonlinear dynamics and break-up of free surface flows. Rev Mod Phys 69:865–929

    Article  ADS  MATH  Google Scholar 

  20. Aoki K, Sone Y (1991) Gas flows around the condensed phase with strong evaporation or condensation—Fluid dynamics equation and its boundary condition on the interface and their application. In: Gatignol R, Soubbaramayer (eds), Advances in kinetic theory and continuum mechanics, proceedings of a symposium held in honor of Professor Henri Cabannes at the University Pierre et Marie Curie, Paris. Springer, Berlin, pp 43–54

    Google Scholar 

  21. Ytrehus T (1997) Molecular-flow effects in evaporation and condensation at interfaces. Multiph Sci Technol 9:205–327

    Article  Google Scholar 

  22. Rose JW (1999) Condensation heat transfer. Heat and mass transfer. Springer, pp 479–485

    Google Scholar 

  23. Rose JW (2000) Accurate approximate equations for intensive sub-sonic evaporation. Int J Heat Mass Transf 43:3869–3875

    Article  MATH  Google Scholar 

  24. Aoki K, Bardos C, Takata S (2003) Knudsen layer for gas mixtures. J Stat Phys 112(3):629–655

    Article  MathSciNet  MATH  Google Scholar 

  25. Temam R (1988) Infinite-dimensional dynamical systems in mechanics and physics. Springer, New York

    Book  MATH  Google Scholar 

  26. Constantin R, Foias C, Nicolaenko B, Temam R (1989) Integral manifolds and inertial manifolds for dissipative partial differential equations. Springer, New York

    Book  MATH  Google Scholar 

  27. Robinson JC (1995) Finite-dimensional behavior in dissipative partial differential equations. Chaos 5:330–345

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Biot MA (1970) Varational principles in heat transfer. Oxford University Press, Oxford

    Google Scholar 

  29. Elliot CM, Ockendon JR (1982) Weak and variational methods for moving boundary problems. Pitman, Boston

    Google Scholar 

  30. Canuto C, Hussaini MY, Quateroni A, Zang TA (1988) Spectral methods in fluid dynamics. Springer

    Google Scholar 

  31. Sirovich L, Knight BW, Rodriguez JD (1990) Optimal low-dimensional dynamical approximations. Quart Appl Math 48:535–548

    Article  MathSciNet  MATH  Google Scholar 

  32. Enß V, Kostrykin V, Schulz W, Zimmermann C, Zefferer H, Petring D (1997) Thermal treatment using laser radiation: laser beam fusion cutting. In: Hoffmann K-H, Jäger W, Lohmann Th, Schunk H (eds) Mathematik—Schlüsseltechnologie für die Zukunft. Springer, Berlin, pp 161–174

    Google Scholar 

  33. Schulz W, Kostrykin V, Zefferer H, Petring D, Poprawe R (1997) A free boundary problem related to laser beam fusion cutting: ODE approximation. Int J Heat Mass Transf 40(12):2913–2928

    Article  MATH  Google Scholar 

  34. Sethian JA (1999) Level set methods and fast marching methods. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  35. Adalsteinsson D, Sethian JA (1999) The fast construction of extension velocities in level set methods. J Comput Phys 148:2–22

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Yserentant H (1986) On the multi-level splitting of finite element spaces. Numer Math 49:379–412

    Article  MathSciNet  MATH  Google Scholar 

  37. Zenger C (1991) Sparse grids. In: Hackbusch W (ed) Parallel algorithms for partial differential equations. In: Proceedings of the 6-th GAMM-Seminar, Kiel, January. Notes on Numerical Fluid Mechanics, Vieweg, Braunschweig, pp 251–31241

    Google Scholar 

  38. Beersiek J, Schulz W, Poprawe R, Mueller R, Duley WW (1997) On-line monitoring of penetration depth in laser beam welding. Processing of ICALEO97, San Diego, USA

    Google Scholar 

  39. Arata Y, Maruo H, Miyamoto I, Takeuchi S (1979) Dynamic behavior in laser gas cutting of mild steel. Trans JWRI 8(2):15–26

    Google Scholar 

  40. Arata Y, Maruo H, Miyamoto I, Takeuchi S (1979) Fundamental research of laser gas cutting II. J High Temp Soc 5:2

    Google Scholar 

  41. Olsen FO (1980) Cutting with polarized laser beams. DVS-Berichte 63:197

    Google Scholar 

  42. Fieret J, Terry MJ, Ward BA (1987) Overview of flow dynamics in gas assisted laser cutting. Proc SPIE High Power Lasers 801:243–250

    ADS  Google Scholar 

  43. van Allmen M (1989) Laser beam interactions with materials. Springer

    Google Scholar 

  44. Steen WM (1991) Laser material processing. Springer

    Google Scholar 

  45. Steen WM, O’Neill W (1994) Review of mathematical models of laser cutting. In: Mordike BL (ed) Lasers in Engineering, Gordon and Breach Publishers, review of mathematical models of high power laser materials processing, vol 3(4), pp 281–297

    Google Scholar 

  46. Powell J (1993) CO\(_2\) laser cutting. Springer, London

    Book  Google Scholar 

  47. Vicanek M, Simon G, Urbassek HM, Decker I (1987) Hydrodynamical instability of melt flow in laser cutting. J Phys D: Appl Phys 20:140–145

    Article  ADS  Google Scholar 

  48. Vicanek M, Simon G (1987) Momentum and heat transfer from an inert gas jet to the melt in laser cutting. J Phys D: Appl Phys 20:1191–1196

    Article  ADS  Google Scholar 

  49. Petring D, Abels P, Beyer E, Herziger G (1988) Werkstoffbearbeitung mit Laserstrahlung, Teil 10: Schneiden von metallischen Werkstoffen mit CO\(_2\)-Hochleistungslaserstrahlung. Feinwerktechnik und Meßtechnik 96:364

    Google Scholar 

  50. Berger P, Herrmann M, Hügel H (1990) Untersuchungen von Laserschneiddsen. In: Waidelich W (ed) Processing of LASER89. Springer, Berlin, p 630

    Google Scholar 

  51. Zefferer H, Petring D, Beyer E (1991) DVS-Berichte 135:210

    Google Scholar 

  52. Man HC, Duan J, Yue TM (1999) Analysis of the dynamic characteristics of gas flow inside a laser cut kerf under high cut-assist gas pressure. J Phys D: Appl Phys 321469–1477

    Google Scholar 

  53. O’Neill WO, Steen WM (1992) The dynamical effects of gas jets in laser cutting. Processing of ICALEO92, Orlando

    Google Scholar 

  54. Shachrai A (1979) Application of high power lasers in manufacturing. Ann CIRP 28:2

    Google Scholar 

  55. Petring D, Abels P, Beyer E (1988) The absorption distribution as a variable property during laser beam cutting. Processing of ICALEO 88, Santa Clara

    Google Scholar 

  56. Schulz W, Becker D (1989) On laser fusion cutting: a closed formulation of the process. In: Bergmann HW (ed) Proceedings of the European Scinetific Laser Workshop, Lisbon. Sprechsaal Publishing Group, Coburg, pp 178–200

    Google Scholar 

  57. Olsen FO (1994) Fundamental mechanisms of cutting front formation in laser cutting. In: Laser materials processing: industrial and microelectronics applications. Proc SPIE 2207:402–413

    Google Scholar 

  58. Kaplan AFH (1996) An analytical model of metal cutting with a laser beam. J Appl Phys 79(5):2198–2208

    Article  ADS  Google Scholar 

  59. Chen SL, Steen WM (1991) The theoretical investigation of gas assisted laser cutting. Processing of ICALEO91, San Jose

    Google Scholar 

  60. Kovalenko V, Romanenko V, Chuck N (1992) Mathematical modelling at metal laser cutting quality evaluation. In: Processing of LAMP92, Nagaoka, p 393

    Google Scholar 

  61. O’Neill WO, Steen WM (1995) A three dimensional analysis of gas entrainment operating during the laser cutting process. J Phys D: Appl Phys 26:12–16

    Article  Google Scholar 

  62. Wagner C (1973) The formation of thin oxide films on metals. Corros Sci 52–1323

    Google Scholar 

  63. Schulz W, Simon G, Vicanek M, Decker I (1987) Influence of the oxidation process in laser gas cutting. Processing of high power lasers and laser machining. SPIE, Den Haag, pp 331–336

    Google Scholar 

  64. Franke J, Schulz W, Petring D, Beyer E (1993) Die Rolle der exothermen Reaktion beim Laserstrahlbrennschneiden. In: Processing of LASER93 562–567

    Google Scholar 

  65. Franke J, Schulz W, Herziger G (1993) Burnoff-stabilized laser beam oxygen cutting—a new process. Weld Cutt 45:490-493, & 45:E161-E162

    Google Scholar 

  66. Zefferer H, Petring D, Schulz W, Schneider F, Herziger G (1993) Laserstrahlschmelzschneiden—Diagnostik und Modellierung des Schmelznachlaufes und der Riefenbildung. In: Geiger M, Hollmann F (eds) Strahl-Stoff-Wechselwirkung bei der Laserstrahlbearbeitung. Ergebnisse des Schwerpunktprogramm (1993)s der Deutschen Forschungsgemeinschaft DFG 1991 bis 1992. Meisenbach, Bamberg, pp 123–128

    Google Scholar 

  67. Grop A, Hutfless J, Schuberth S, Geiger M (1995) Laser beam cutting. J Opt Quant Electron 27:1257–1271

    Google Scholar 

  68. Yudin PV, Petrov AP, Kovalev OB (2007) Experimental modelling and high speed photographic studies of gas laser cutting of sheet metal. Congress on high-speed photography and photonics. Proc SPIE 6279(17):1–11

    Google Scholar 

  69. Moalem A (2005) Koaxiale Fremdbeleuchtung zur Überwachung des Schneidens und Schweissens mit Laserstrahlung. Diploma thesis, RWTH Aachen University

    Google Scholar 

  70. Ward BA (1984) Proceedings of the international conference on application of lasers and electro-optics (Boston, MA). Laser Institute of America, Boston, MA, p 730

    Google Scholar 

  71. Zefferer H, Petring D, Beyer E (1991) Investigation of the gas flow in laser beam cutting. Deutscher Verband für Schweißtechnik e.V. DVS, Düsseldorf: 3. Internationale Konferenz Stahltechnik ’91, Düsseldorf: DVS-Verlag

    Google Scholar 

  72. Jolly MS (1989) Explicit construction of an inertial manifold for a reaction diffusion equation. J Diff Eq 78:220–261

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. Hylleraas EA (1929) The Schrödinger two-electron atomic problem. Adv Quantum Chem 1:15

    Google Scholar 

  74. Saltzmann B (1962) Finite amplitude free convection as an initial value problem. J Atmos Sci 19:329

    Article  ADS  Google Scholar 

  75. Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20130

    Google Scholar 

  76. Fasano A, Primicerio M (1977) General free-boundary value problems for the heat equation, I, II, III. J Math Anal Appl 57:694–723, & 58:202–231, & 59:1–14

    Google Scholar 

  77. Filippov AF (1988) Differential equations with discontinuous righthand sides. Kluwer, Dodrecht

    Book  Google Scholar 

  78. Arnold VI, Afraimovich VS, L’yashenko YSI, Shilnikov LP (1994) Bifurcation theory. In: Arnold VI (ed) Dynamical systems V. Springer, Berlin

    Google Scholar 

  79. Batchelor GK (1967) An introduction to fluid dynamics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  80. Miles JW (1960) The hydrodynamic stability of a thin film of fluid in uniform shearing motion. J Fluid Mech 8:593–610

    Article  ADS  MathSciNet  MATH  Google Scholar 

  81. Schulz W, Becker D, Franke J, Kemmerling R, Herziger G (1993) Heat conduction losses in laser cutting of metals. J Phys D: Appl Phys 26:1375–1363

    Article  Google Scholar 

  82. Gross MS, Black I, Mueller WH (2004) Determination of the lower complexity limit for laser cut quality modelling. Modelling Simul Mater Sci Eng 12:1237–1249

    Article  ADS  Google Scholar 

  83. Rogers DF (1992) Laminar flow analysis. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  84. Geiger M (1993) Texte zum Berichtskolloquium der DFG im Rahmen des Schwerpunktprogramms. In: Hollmann F (ed) Strahl-Stoff-Wechselwirkung bei der Laserstrahlbearbeitung 1991–1992. Meisenbach Verlag, Bamberg, pp 123–128

    Google Scholar 

  85. Horn A, Mingareev I, Miyamoto I (2006) Ultra-fast diagnostics of laser-induced melting of matter. JLMN-J Laser Micro/Nanoeng 1(3):264–268

    Article  Google Scholar 

Download references

Acknowledgements

The support of the investigations related to gas flow phenomena under contract no. SCHU 1506/1-1 EN116/4-1 by the German Research Foundation is gratefully acknowledged. The research related to identification of processing domains is supported by the German Research Foundation DFG as part of the Cluster of Excellence “Integrative Production Technology for High-Wage Countries” at RWTH Aachen University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Schulz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Schulz, W., Nießen, M., Eppelt, U., Kowalick, K. (2017). Simulation of Laser Cutting. In: Dowden, J., Schulz, W. (eds) The Theory of Laser Materials Processing. Springer Series in Materials Science, vol 119. Springer, Cham. https://doi.org/10.1007/978-3-319-56711-2_2

Download citation

Publish with us

Policies and ethics