Skip to main content

Hereditary Breast Cancer Genetics and Risk Prediction Techniques

  • Chapter
  • First Online:
Breast Cancer Management for Surgeons

Abstract

Around 10% of individuals with breast cancer carry an inherited germline cancer susceptibility mutation, of which BRCA1 and BRCA2 confer the highest risk. Increased familial breast cancer risk is also observed in families testing negative for high-risk germline mutations, suggesting that polygenic interactions of multiple lower-penetrance susceptibility alleles, in addition to traditional breast cancer risk factors, are important causes of familial breast cancer.

Hereditary breast cancers are a significant subgroup of the overall breast cancer disease burden due to their specific management implications. Furthermore, inherited cancer models have heralded new paradigms in our understanding of both somatic and inherited cancer development. This chapter will outline the basics of oncogenesis, key concepts in genetics and inherited breast cancer susceptibility genes. It will discuss risk prediction techniques and, finally, approaches to genetic testing in breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ACGH:

Array comparative genome hybridisation

CNV:

Copy number variation

CS:

Cowden syndrome

ER:

Oestrogen receptor

FISH:

Fluorescence in situ hybridisation

GWAS:

Genome-wide association study

HER2:

Human epidermal growth factor receptor 2

LFS:

Li-Fraumeni syndrome

MLPA:

Multiplex Ligation-dependent Probe Amplification

MSS:

Manchester scoring system

NCCN:

National Comprehensive Cancer Network (USA)

NGS:

Next-generation sequencing

NICE:

National Institute of Health and Care Excellence (UK)

PJS:

Peutz-Jeghers syndrome

PR:

Progesterone receptor

SNP:

Single nucleotide polymorphism

TNT:

Triple-negative tumour

TSG:

Tumour suppressor gene

VUS:

Variant of unknown significance

WES:

Whole exome sequencing

WGS:

Whole genome sequencing

References

  1. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.

    Article  CAS  PubMed  Google Scholar 

  2. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  3. Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J. Molecular cell biology. 4th ed. New York: W. H. Freeman; 2000.

    Google Scholar 

  4. Hyndman IJ. Review: the contribution of both nature and nurture to carcinogenesis and progression in solid tumours. Cancer Microenviron. 2016;9:63–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Quail D, Joyce J. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19:1423–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–23.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Easton DF, Eeles RA. Genome-wide association studies in cancer. Hum Mol Genet. 2008;17:109–15.

    Article  Google Scholar 

  8. Ueno T, Emi M, Sato H, Ito N, Muta M, Kuroi K, Toi M. Genome-wide copy number analysis in primary breast cancer. Expert Opin Ther Targets. 2012;16:S31–5.

    Article  CAS  PubMed  Google Scholar 

  9. Rainville IR, Rana HQ. Next-generation sequencing for inherited breast cancer risk: counseling through the complexity topical collection on breast cancer. Curr Oncol Rep. 2014; doi:10.1007/s11912-013-0371-z.

  10. Stratton M, Campbell P, Futreal A. The cancer genome. Nature. 2009;458:719–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pereira B, Chin S-F, Rueda OM, et al. The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nat Commun. 2016;7:11479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Beca F, Polyak K. Intratumor heterogeneity in breast cancer. Adv Exp Med Biol. 2016;8:169–89.

    Article  Google Scholar 

  13. Wellcome Trust Sanger Institute COSMIC Catalogue of Somatic Mutations in Cancer. http://cancer.sanger.ac.uk/cosmic. Accessed 15 Oct 2016.

  14. Forbes SA, Bindal N, Bamford S, et al. COSMIC: mining complete cancer genomes in the catalogue of somatic mutations in cancer. Nucleic Acids Res. 2011;39:945–50.

    Article  Google Scholar 

  15. Hammond MEH, Hayes DF, Dowsett M, et al. American society of clinical oncology/college of american pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Clin Oncol. 2010;28:2784–95.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Knudson AG. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A. 1971;68:820–3.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Knudson AG. Two genetic hits (more or less) to cancer. Nat Rev Cancer. 2001;1:157–62.

    Article  CAS  PubMed  Google Scholar 

  18. Teerlink CC, Albright FS, Lins L, Cannon-Albright L a. A comprehensive survey of cancer risks in extended families. Genet Med. 2012;14:107–14.

    Article  PubMed  Google Scholar 

  19. Easton DF, Pharoah PDP, Antoniou AC, et al. Gene-panel sequencing and the prediction of breast-cancer risk. N Engl J Med. 2015;372:2243–57.

    Google Scholar 

  20. National Institute for Health and Care Excellence. Familial breast cancer: classification, care and managing breast cancer and related risks in people with a family history of breast cancer; 2013. https://www.nice.org.uk/guidance/cg164/chapter/1-recommendations. Accessed 15 Oct 2016.

  21. Turnbull C, Rahman N. Genetic predisposition to breast cancer: past, present, and future. Annu Rev Genomics Hum Genet. 2008;9:321–45.

    Article  CAS  PubMed  Google Scholar 

  22. Miki Y, Swensen J, Shattuck-eidens D, et al. Strong candidate for the breast and ovarian cancer. Science. 1994;266:66–71.

    Article  CAS  PubMed  Google Scholar 

  23. Wooster R, Bignell G, Lancaster J, Swift S, Seal S, Mangion J, Collins N, Gregory S, Gumbs C, Micklem G. Identification of the breast cancer susceptibility gene BRCA2. Nature. 1995;378:789–92.

    Article  CAS  PubMed  Google Scholar 

  24. Moynahan ME, Chiu JW, Koller BH, Jasint M. BRCA1 controls homology-directed DNA repair. Mol Cell. 1999;4:511–8.

    Article  CAS  PubMed  Google Scholar 

  25. Moynahan ME, Pierce AJ, Jasin M. BRCA2 is required for homology-directed repair of chromosomal breaks. Mol Cell. 2001;7:263–72.

    Article  CAS  PubMed  Google Scholar 

  26. Petrucelli N, Daly MB, Feldman GL. Hereditary breast and ovarian cancer due to mutations in BRCA1 and BRCA2. Genet Med. 2010;12:245–59.

    Article  CAS  PubMed  Google Scholar 

  27. Ford D, Easton DF, Peto J. Estimates of the gene frequency of BRCA1 and its contribution to breast and ovarian cancer incidence. Am J Hum Genet. 1995;57:1457–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Whittemore AS, Gong G, Itnyre J. Prevalence and contribution of BRCA1 mutations in breast cancer and ovarian cancer: results from three U.S. population-based case-control studies of ovarian cancer. Am J Hum Genet. 1997;60:496–504.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Roa BB, Boyd AA, Volcik K, Richards CS. Ashkenazi Jewish population frequencies for common mutations in BRCA1 and BRCA2. Nat Genet. 1996;14:185–7.

    Article  CAS  PubMed  Google Scholar 

  30. Ferla R, Calo V, Cascio S, Rinaldi G, Badalamenti G, Carreca I, Surmacz E, Colucci G, Bazan V, Russo A. Founder mutations in BRCA1 and BRCA2 genes. Ann Oncol. 2007;18:93–8.

    Article  Google Scholar 

  31. Johannesdottir G, Gudmundsson J, Bergthorsson JT, Arason A, Agnarsson BA, Bjã R, Borg A, Ingvarsson S, Easton DF, Egilsson V. High prevalence of the 999del5 mutation in icelandic breast and ovarian cancer patients advances in brief cancer patients1. Cancer Res. 1996;56:3663–5.

    Google Scholar 

  32. Mavaddat N, Peock S, Frost D, et al. Cancer risks for BRCA1 and BRCA2 mutation carriers: results from prospective analysis of EMBRACE. J Natl Cancer Inst. 2013;105:812–22.

    Article  CAS  PubMed  Google Scholar 

  33. Van Der Groep P, Van Der Wall E, Van Diest PJ. Pathology of hereditary breast cancer. Cell Oncol. 2011;34:71–88.

    Article  Google Scholar 

  34. Foulkes WD. Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer. J Natl Cancer Inst. 2003;95:1482–5.

    Article  CAS  PubMed  Google Scholar 

  35. Spurdle AB, Couch FJ, Parsons MT, et al. Refined histopathological predictors of BRCA1 and BRCA2 mutation status: a large-scale analysis of breast cancer characteristics from the BCAC, CIMBA, and ENIGMA consortia. Breast Cancer Res. 2014;16:3419.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Malkin D, Li F, Strong L, Fraumeni JJ, Nelson C, Kim D, Kassel J, Gryka M, Bischoff F, Tainsky M. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science. 1990;250:1233–8.

    Article  CAS  PubMed  Google Scholar 

  37. Lalloo F, Varley J, Ellis D, Moran A, O’Dair L, Pharoah P, Evans D. Prediction of pathogenic mutations in patients with early-onset breast cancer by family history. Lancet. 2003;361:1101–2.

    Article  CAS  PubMed  Google Scholar 

  38. Gonzalez KD, Noltner KA, Buzin CH, et al. Beyond Li Fraumeni syndrome: clinical characteristics of families with p53 germline mutations. J Clin Oncol. 2009;27:1250–6.

    Article  CAS  PubMed  Google Scholar 

  39. Gonzalez KD, Buzin CH, Noltner KA, Gu D, Li W, Malkin D, Sommer SS. High frequency of de novo mutations in Li-Fraumeni syndrome. J Med Genet. 2009;46:689–93.

    Article  CAS  PubMed  Google Scholar 

  40. Chompret A, Brugières L, Ronsin M, et al. P53 germline mutations in childhood cancers and cancer risk for carrier individuals. Br J Cancer. 2000;82:1932–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bougeard G, Renaux-Petel M, Flaman JM, et al. Revisiting Li-Fraumeni syndrome from TP53 mutation carriers. J Clin Oncol. 2015;33:2345–52.

    Article  CAS  PubMed  Google Scholar 

  42. Ruijs MWG, Verhoef S, Rookus MA, et al. TP53 germline mutation testing in 180 families suspected of Li-Fraumeni syndrome: mutation detection rate and relative frequency of cancers in different familial phenotypes. J Med Genet. 2010;47:421–8.

    Article  CAS  PubMed  Google Scholar 

  43. Wilson JRF, Bateman AC, Hanson H, An Q, Evans G, Rahman N, Jones JL, Eccles DM. A novel HER2-positive breast cancer phenotype arising from germline TP53 mutations. J Med Genet. 2010;47:771–4.

    Article  CAS  PubMed  Google Scholar 

  44. McCuaig JM, Armel SR, Novokmet A, Ginsburg OM, Demsky R, Narod SA, Malkin D. Routine TP53 testing for breast cancer under age 30: ready for prime time? Familial Cancer. 2012;11:607–13.

    Article  CAS  PubMed  Google Scholar 

  45. Hezel A, Bardeesy N. LKB1; linking cell structure and tumor suppression. Oncogene. 2008;27:6908–19.

    Article  CAS  PubMed  Google Scholar 

  46. Tchekmedyian A, Amos CI, Bale SJ, Zhu D, Arold S, Berrueta J, Nabon N, Mcgarrity T. Findings from the Peutz-Jeghers syndrome registry of Uruguay. PLoS One. 2013;8(11):e79639. doi:10.1371/journal.pone.0079639.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hearle N, Schumacher V, Menko FH, et al. Frequency and spectrum of cancers in the Peutz-Jeghers syndrome. Clin Cancer Res. 2006;12:3209–15.

    Article  CAS  PubMed  Google Scholar 

  48. van Lier MGF, Wagner A, Mathus-Vliegen EMH, Kuipers EJ, Steyerberg EW, van Leerdam ME. High cancer risk in Peutz-Jeghers syndrome: a systematic review and surveillance recommendations. Am J Gastroenterol. 2010;105:1258–64.

    Article  PubMed  Google Scholar 

  49. Georgescu M-M. PTEN tumor suppressor network in PI3K-Akt pathway control. Genes Cancer. 2010;1:1170–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nelen MR, Van Staveren WCG, Peeters EAJ, et al. Germline mutations in the PTEN/MMAC1 gene in patients with Cowden disease. Hum Mol Genet. 1997;6:1383–7.

    Article  CAS  PubMed  Google Scholar 

  51. Nelen MR, Kremer H, Konings IBM, et al. Novel PTEN mutations in patients with Cowden disease : absence of clear genotype – phenotype correlations. Eur J Hum Genet. 1999;7:267–73.

    Google Scholar 

  52. Ngeow J, Sesock K, Eng C. Breast cancer risk and clinical implications for germline PTEN mutation carriers. Breast Cancer Res Treat. 2015;165:1–8.

    Google Scholar 

  53. Bubien V, Bonnet F, Brouste V, et al. High cumulative risks of cancer in patients with PTEN hamartoma tumour syndrome. J Med Genet. 2013;50:255–63.

    Article  CAS  PubMed  Google Scholar 

  54. Nieuwenhuis MH, Kets CM, Murphy-Ryan M, et al. Cancer risk and genotype-phenotype correlations in PTEN hamartoma tumor syndrome. Familial Cancer. 2014;13:57–63.

    Article  CAS  PubMed  Google Scholar 

  55. Corso G, Intra M, Trentin C, Veronesi P, Galimberti V. CDH1 germline mutations and hereditary lobular breast cancer. Familial Cancer. 2016;15:215–9.

    Article  CAS  PubMed  Google Scholar 

  56. Guilford P, Hopkins J, Harraway J, McLeod M, McLeod N, Harawira P, Taite H, Scoular R, Miller A, Reeve A. E-cadherin germline mutations in familial gastric cancer. Nature. 1998;392:402–5.

    Article  CAS  PubMed  Google Scholar 

  57. Pharoah PD, Guilford P, Caldas C. Incidence of gastric cancer and breast cancer in CDH1 (E-cadherin) mutation carriers from hereditary diffuse gastric cancer families. Gastroenterology. 2001;121:1348–53.

    Article  CAS  PubMed  Google Scholar 

  58. Hansford S, Kaurah P, Li-chang H, et al. Hereditary diffuse gastric cancer syndrome. JAMA Oncol. 2015;1:23–32.

    Article  PubMed  Google Scholar 

  59. Zhang F, Ma J, Wu J, Ye L, Cai H, Xia B, Yu X. PALB2 links BRCA1 and BRCA2 in the DNA-damage response. Curr Biol. 2009;19:524–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Antoniou AC, Casadei S, Heikkinen T, et al. Breast-cancer risk in families with mutations in PALB2. N Engl J Med. 2014;371:497–506.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Lavin MF. Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nat Rev Mol Cell Biol. 2008;9:759–69.

    Article  CAS  PubMed  Google Scholar 

  62. Marabelli M, Cheng S-C, Parmigiani G. Penetrance of ATM gene mutations in breast cancer: a meta-analysis of different measures of risk. Genet Epidemiol. 2016;40:425–31.

    Article  PubMed  Google Scholar 

  63. Meijers-Heijboer H, van den Ouweland A, Klijn J, et al. Low-penetrance susceptibility to breast cancer due to CHEK2(*)1100delC in noncarriers of BRCA1 or BRCA2 mutations. Nat Genet. 2002;31:55–9.

    Article  CAS  PubMed  Google Scholar 

  64. Naslund-Koch C, Nordestgaard BG, Bojesen SE. Increased risk for other cancers in addition to breast cancer for CHEK2*1100delC heterozygotes estimated from the copenhagen general population study. J Clin Oncol. 2016;34:1208–16.

    Article  PubMed  Google Scholar 

  65. Ghoussaini M, Pharoah PDP, Easton DF. Inherited genetic susceptibility to breast cancer. Am J Pathol. 2013;183:1038–51.

    Article  CAS  PubMed  Google Scholar 

  66. Mavaddat N, Antoniou AC, Easton DF, Garcia-Closas M. Genetic susceptibility to breast cancer. Mol Oncol. 2010;4:174–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gage M, Wattendorf D, Henry LR. Translational advances regarding hereditary breast cancer syndromes. J Surg Oncol. 2012;105:444–51.

    Article  CAS  PubMed  Google Scholar 

  68. National Comprehensive Cancer Network. Genetic/familial high-risk assessment: breast and ovarian; 2016. http://www.nccn.org/professionals/physician_gls/pdf/genetics_screening.pdf. Accessed 15 Oct 2016.

  69. Coates AS, Winer EP, Goldhirsch A, Gelber RD, Gnant M, Thürlimann B, Senn H, Members P. Tailoring therapies — improving the management of early breast cancer : St Gallen international expert consensus on the primary therapy of early breast cancer 2015. Ann Oncol. 2015;26:1533–46.

    Google Scholar 

  70. Hereditary cancer risk assessment and referral guidelines for clinicians. www.ubqo.com/cancergenetics. Accessed 15 Oct 2016.

  71. Evans DGR, Eccles DM, Rahman N, Young K, Bulman M, Amir E, Shenton A, Howell A, Lalloo F. A new scoring system for the chances of identifying a BRCA1/2 mutation outperforms existing models including BRCAPRO. J Med Genet. 2004;41:474–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Evans DGR, Lalloo F, Cramer A, Jones EA, Knox F, Amir E, Howell A. Addition of pathology and biomarker information significantly improves the performance of the Manchester scoring system for BRCA1 and BRCA2 testing. J Med Genet. 2009;46:811–7.

    Article  CAS  PubMed  Google Scholar 

  73. Amir E, Freedman OC, Seruga B, Evans DG. Assessing women at high risk of breast cancer: a review of risk assessment models. J Natl Cancer Inst. 2010;102:680–91.

    Article  PubMed  Google Scholar 

  74. Gail M, Brinton L, Byar D, Corle D, Green S, Schairer C, Mulvihill J. Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. J Natl Cancer Inst. 1989;81:1879–86.

    Article  CAS  PubMed  Google Scholar 

  75. Costantino JP, Gail MH, Pee D, Anderson S, Redmond CK, Benichou J, Wieand HS. Validation studies for models projecting the risk of invasive and total breast cancer incidence. J Natl Cancer Inst. 1999;91:1541–8.

    Article  CAS  PubMed  Google Scholar 

  76. Cummings SR, Tice JA, Bauer S, et al. Prevention of breast cancer in postmenopausal women: approaches to estimating and reducing risk. J Natl Cancer Inst. 2009;101:384–98.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Anothaisintawee T, Teerawattananon Y, Wiratkapun C, Kasamesup V, Thakkinstian A. Risk prediction models of breast cancer: a systematic review of model performances. Breast Cancer Res Treat. 2012;133:1–10.

    Article  PubMed  Google Scholar 

  78. Claus EB, Risch N, Thompson WD. Genetic analysis of breast cancer in the cancer and steroid hormone study. Am J Hum Genet. 1991;48:232–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Claus EB, Risch N, Thompson WD. The calculation of breast cancer risk for women with a first degree family history of ovarian cancer. Breast Cancer Res Treat. 1993;28:115–20.

    Article  CAS  PubMed  Google Scholar 

  80. Tyrer J, Duffy SW, Cuzick J. A breast cancer prediction model incorporating familial and personal risk factors. Stat Med. 2004;23:1111–30.

    Article  PubMed  Google Scholar 

  81. Parmigiani G, Berry D, Aguilar O. Determining carrier probabilities for breast cancer-susceptibility genes BRCA1 and BRCA2. Am J Hum Genet. 1998;62:145–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Antoniou A, Pharoah P, Mcmullan G, Day N, Peto J, Ponder B, Easton D. A comprehensive model for familial breast cancer incorporating BRCA1, BRCA2 and other genes. Br J Cancer. 2002;86:76–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Antoniou AC, Pharoah PPD, Smith P, Easton DF. The BOADICEA model of genetic susceptibility to breast and ovarian cancer. Br J Cancer. 2004;91:1580–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lee AJ, Cunningham AP, Tischkowitz M, Simard J, Pharoah PD, Easton DF, Antoniou AC. Incorporating truncating variants in PALB2, CHEK2, and ATM into the BOADICEA breast cancer risk model. Genet Med. 2016;18:1–9.

    Google Scholar 

  85. Gail MH, Mai PL. Comparing breast cancer risk assessment models. J Natl Cancer Inst. 2010;102:665–8.

    Article  PubMed  Google Scholar 

  86. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977;74:5463–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Riegel M. Human molecular cytogenetics: from cells to nucleotides. Genet Mol Biol. 2014;37:194–209.

    Article  PubMed  Google Scholar 

  88. Hömig-Hölzel C, Savola S. Multiplex Ligation-dependent Probe Amplification (MLPA) in tumor diagnostics and prognostics. Diagn Mol Pathol. 2012;21:1.

    Article  Google Scholar 

  89. Behjati S, Tarpey PS. What is next generation sequencing? Arch Dis Child Educ Pract Ed. 2013;98:236–8.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Lohmann K, Klein C. Next generation sequencing and the future of genetic diagnosis. Neurotherapeutics. 2014;11:699–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Xue Y, Ankala A, Wilcox WR, Hegde MR. Solving the molecular diagnostic testing conundrum for Mendelian disorders in the era of next-generation sequencing: single-gene, gene panel, or exome/genome sequencing. Genet Med. 2014;17:1–8.

    Google Scholar 

  92. Green RC, Berg JS, Grody WW, Nussbaum RL, Daniel JMO, Kelly E. ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet Med. 2014;15:565–74.

    Article  Google Scholar 

  93. Eccles EB, Mitchell G, Monteiro ANA, et al. BRCA1 and BRCA2 genetic testing-pitfalls and recommendations for managing variants of uncertain clinical significance. Ann Oncol. 2015;26:2057–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Eggington JM, Bowles KR, Moyes K, et al. A comprehensive laboratory-based program for classification of variants of uncertain significance in hereditary cancer genes. Clin Genet. 2014;86:229–37.

    Article  CAS  PubMed  Google Scholar 

  95. O’Neill SC, Rini C, Goldsmith RE, Valdimarsdottir H, Cohen LH, Schwartz MD. Distress among women receiving uninformative BRCA1/2 results: 12-month outcomes. Psychooncology. 2009;18:1088–96.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Fecteau H, Vogel KJ, Hanson K, Morrill-Cornelius S. The evolution of cancer risk assessment in the era of next generation sequencing. J Genet Couns. 2014;23:633–9.

    Article  PubMed  Google Scholar 

  97. Ghoussaini M, Fletcher O, Michailidou K, et al. Genome-wide association analysis identifies three new breast cancer susceptibility loci. Nat Genet. 2013;44:312–8.

    Article  Google Scholar 

  98. Metcalfe KA, Finch A, Poll A, et al. Breast cancer risks in women with a family history of breast or ovarian cancer who have tested negative for a BRCA1 or BRCA2 mutation. Br J Cancer. 2009;100:421–5.

    Article  CAS  PubMed  Google Scholar 

  99. Reiner AS, John EM, Brooks JD, et al. Risk of asynchronous contralateral breast cancer in noncarriers of BRCA1 and BRCA2 mutations with a family history of breast cancer: a report from the women’s environmental cancer and radiation epidemiology study. J Clin Oncol. 2013;31:433–9.

    Article  PubMed  Google Scholar 

  100. Nilsson MP, Hartman L, Idvall I, Kristoffersson U, Johannsson OT, Loman N. Long-term prognosis of early-onset breast cancer in a population-based cohort with a known BRCA1/2 mutation status. Breast Cancer Res Treat. 2014;144:133–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Peplow M. The 100 000 genomes Project. BMJ. 2016;1757:i1757.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anju Kulkarni MBBS, BSc, MD(Res), FRCP .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Carley, H., Kulkarni, A. (2018). Hereditary Breast Cancer Genetics and Risk Prediction Techniques. In: Wyld, L., Markopoulos, C., Leidenius, M., Senkus-Konefka, E. (eds) Breast Cancer Management for Surgeons. Springer, Cham. https://doi.org/10.1007/978-3-319-56673-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56673-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56671-9

  • Online ISBN: 978-3-319-56673-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics