Wireless Powered Sensor Networks



The future Internet of Things (IoT) will connect trillions of devices, where wireless sensors will play an important part. Due to the large scale of such networks, battery replacement is a crucial issue for the massive number of wireless sensors. To efficiently address the finite sensor lifetime problem in IoT, techniques such as energy harvesting powered and wireless power transfer powered WSNs are promising solutions. In this chapter, first, we summarize the state-of-the-art WSNs, EH-based WSNs, and wireless power transfer techniques, and then motivate wireless power transfer-based WSNs. Also we present the major design challenges for wireless power transfer-based status monitoring WSNs, including accurate modeling of sensor energy costs and metrics to take into account the age of the sensed information. We present a novel solution to one of the challenges. Specifically, we present a harvest-then-use protocol and consider two complementary performance metrics to measure the timeliness of the status monitoring WSN, i.e., update cycle and update age. Moreover, we present a framework of analysis for both the update cycle and the update age, which takes into account both the energy cost of sensing and transmission.


Wireless power transfer Status monitoring WSNs Update cycle Update age Age of information 


  1. 1.
    K. Sohraby, D. Minoli, T. Znati, Wireless Sensor Networks: Technology, Protocols, and Applications (Wiley, New York, 2007)CrossRefGoogle Scholar
  2. 2.
    M. Connectivity, The monitored World - a local perspective (2015). [Online]. Available: https://blog.m2mconnectivity.com.au/2015/09/07/the-monitored-world-a-local-perspective/
  3. 3.
    H. Yetgin, K.T.K. Cheung, M. El-Hajjar, L. Hanzo, A survey of network lifetime maximization techniques. IEEE Commun. Surv. Tutorials. (2017). AcceptedGoogle Scholar
  4. 4.
    S. Sudevalayam, P. Kulkarni, Energy harvesting sensor nodes: survey and implications. IEEE Commun. Surv. Tutorials 13(3), 443–461, Third Quarter (2011)Google Scholar
  5. 5.
    V. Gungor, G. Hancke, Industrial wireless sensor networks: challenges, design principles, and technical approaches. IEEE Trans. Ind. Electron. 56(10), 4258–4265 (2009)CrossRefGoogle Scholar
  6. 6.
    D. Niyato, E. Hossain, A. Fallahi, Sleep and wakeup strategies in solar-powered wireless sensor/mesh networks: performance analysis and optimization. IEEE Trans. Mob. Comput. 6(2), 221–236 (2007)CrossRefGoogle Scholar
  7. 7.
    J. Lei, R. Yates, L. Greenstein, A generic model for optimizing single-hop transmission policy of replenishable sensors. IEEE Trans. Wirel. Commun. 8(2), 547–551 (2009)CrossRefGoogle Scholar
  8. 8.
    V. Raghunathan, S. Ganeriwal, M. Srivastava, Emerging techniques for long lived wireless sensor networks. IEEE Commun. Mag. 44(4), 108–114 (2006)CrossRefGoogle Scholar
  9. 9.
    W. Liu, K. Huang, X. Zhou, S. Durrani, Backscatter communications for internet-of-things: theory and applications. ArXiv e-prints (2017). [Online]. Available: https://arxiv.org/abs/1701. 07588
  10. 10.
    C. Boyer, S. Roy, Backscatter communication and RFID: coding, energy, and MIMO analysis. IEEE Trans. Commun. 62(3), 770–785 (2014)CrossRefGoogle Scholar
  11. 11.
    W. Liu, K. Huang, X. Zhou, S. Durrani, Full-duplex backscatter interference networks based on time-hopping spreading spectrum. IEEE Trans. Wirel. Commun. (2017, to appear)Google Scholar
  12. 12.
    S. Mao, M.H. Cheung, V. Wong, Joint energy allocation for sensing and transmission in rechargeable wireless sensor networks. IEEE Trans. Veh. Technol. 63(6), 2862–2875 (2014)CrossRefGoogle Scholar
  13. 13.
    H. Mahdavi-Doost, R. Yates, Energy harvesting receivers: finite battery capacity, in Proceedings of IEEE ISIT, July (2013), pp. 1799–1803Google Scholar
  14. 14.
    Z.A. Eu, H.-P. Tan, W.K. Seah, Design and performance analysis of MAC schemes for wireless sensor networks powered by ambient energy harvesting. Ad Hoc Netw. 9(3), 300–323 (2011)CrossRefGoogle Scholar
  15. 15.
    C. Huang, R. Zhang, S. Cui, Throughput maximization for the Gaussian relay channel with energy harvesting constraints. IEEE J. Sel. Areas Commun. 31(8), 1469–1479 (2013)CrossRefGoogle Scholar
  16. 16.
    C.K. Ho, R. Zhang, Optimal energy allocation for wireless communications with energy harvesting constraints. IEEE Trans. Signal Process. 60(9), 4808–4818 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    A. Seyedi, B. Sikdar, Energy efficient transmission strategies for body sensor networks with energy harvesting. IEEE Trans. Commun. 58(7), 2116–2126 (2010)CrossRefGoogle Scholar
  18. 18.
    S. Zhang, A. Seyedi, B. Sikdar, An analytical approach to the design of energy harvesting wireless sensor nodes. IEEE Trans. Wirel. Commun. 12(8), 4010–4024 (2013)CrossRefGoogle Scholar
  19. 19.
    S. Luo, R. Zhang, T.J. Lim, Optimal save-then-transmit protocol for energy harvesting wireless transmitters. IEEE Trans. Wirel. Commun. 12(3), 1196–1207 (2013)CrossRefGoogle Scholar
  20. 20.
    R. Morsi, D. Michalopoulos, R. Schober, On-off transmission policy for wireless powered communication with energy storage, in Proceedings of Asilomar, November (2014), pp. 1676–1682Google Scholar
  21. 21.
    Y. Dong, F. Farnia, A. Ozgur, Near optimal energy control and approximate capacity of energy harvesting communication. IEEE J. Sel. Areas Commun. 33(3), 540–557 (2015)CrossRefGoogle Scholar
  22. 22.
    N. Michelusi, L. Badia, M. Zorzi, Optimal transmission policies for energy harvesting devices with limited state-of-charge knowledge. IEEE Trans. Commun. 62(11), 3969–3982 (2014)CrossRefGoogle Scholar
  23. 23.
    O. Ozel, K. Tutuncuoglu, J. Yang, S. Ulukus, A. Yener, Transmission with energy harvesting nodes in fading wireless channels: optimal policies. IEEE J. Sel. Areas Commun. 29(8), 1732–1743 (2011)CrossRefGoogle Scholar
  24. 24.
    J. Yang, S. Ulukus, Transmission completion time minimization in an energy harvesting system, in Proceedings of CISS, March (2010), pp. 1–6Google Scholar
  25. 25.
    J. Yang, S. Ulukus, Delay-minimal transmission for energy constrained wireless communications, in Proceedings of IEEE ICC, May (2008), pp. 3531–3535Google Scholar
  26. 26.
    Y. Mao, G. Yu, Z. Zhang, On the optimal transmission policy in hybrid energy supply wireless communication systems. IEEE Trans. Wirel. Commun. 13(11), 6422–6430 (2014)CrossRefGoogle Scholar
  27. 27.
    N. Michelusi, M. Zorzi, Optimal random multiaccess in energy harvesting wireless sensor networks, in Proceedings of IEEE ICC, June (2013), pp. 463–468Google Scholar
  28. 28.
    X. Lu, P. Wang, D. Niyato, D.I. Kim, Z. Han, Wireless networks with RF energy harvesting: a contemporary survey. IEEE Commun. Surv. Tutorials 17(2), 757–789, Second Quarter (2015)Google Scholar
  29. 29.
    B. Clerckx, E. Bayguzina, Waveform design for wireless power transfer. IEEE Trans. Signal Process. 64(23), 6313–6328 (2016)MathSciNetCrossRefGoogle Scholar
  30. 30.
    E. Boshkovska, D.W.K. Ng, N. Zlatanov, R. Schober, Practical non-linear energy harvesting model and resource allocation for SWIPT systems. IEEE Commun. Lett. 19(12), 2082–2085 (2015)CrossRefGoogle Scholar
  31. 31.
    T. Wu, H.-C. Yang, On the performance of overlaid wireless sensor transmission with RF energy harvesting. IEEE J. Sel. Areas Commun. 33(8), 1693–1705 (2015)MathSciNetGoogle Scholar
  32. 32.
    W. Liu, X. Zhou, S. Durrani, P. Popovski, SWIPT with practical modulation and RF energy harvesting sensitivity, in Proceedings of ICC, May (2016), pp. 1–7Google Scholar
  33. 33.
    R. Zhang, C.K. Ho, MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Trans. Wirel. Commun. 12(5), 1989–2001 (2013)CrossRefGoogle Scholar
  34. 34.
    X. Zhou, R. Zhang, C.K. Ho, Wireless information and power transfer: architecture design and rate-energy tradeoff. IEEE Trans. Commun. 61(11), 4754–4767 (2013)CrossRefGoogle Scholar
  35. 35.
    K. Huang, V.K.N. Lau, Enabling wireless power transfer in cellular networks: architecture, modeling and deployment. IEEE Trans. Wirel. Commun. 13(2), 902–912 (2014)CrossRefGoogle Scholar
  36. 36.
    J. Xu, R. Zhang, Energy beamforming with one-bit feedback. IEEE Trans. Signal Process. 62(20), 5370–5381 (2014)MathSciNetCrossRefGoogle Scholar
  37. 37.
    S. Lee, R. Zhang, Distributed energy beamforming with one-bit feedback, in Proceedings of IEEE WCNC, April (2016), pp. 1–6Google Scholar
  38. 38.
    Z. Wang, L. Duan, R. Zhang, Adaptively directional wireless power transfer for large-scale sensor networks. IEEE J. Sel. Areas Commun. 34(5), 1785–1800 (2016)CrossRefGoogle Scholar
  39. 39.
    S. Bi, R. Zhang, Placement optimization of energy and information access points in wireless powered communication networks. IEEE Trans. Wirel. Commun. 15(3), 2351–2364 (2016)CrossRefGoogle Scholar
  40. 40.
    A.A. Nasir, X. Zhou, S. Durrani, R.A. Kennedy, Wireless-powered relays in cooperative communications: time-switching relaying protocols and throughput analysis. IEEE Trans. Commun. 63(5), 1607–1622 (2015)CrossRefGoogle Scholar
  41. 41.
    Y. Zeng, H. Chen, R. Zhang, Bidirectional wireless information and power transfer with a helping relay. IEEE Commun. Lett. 20(5), 862–865 (2016)CrossRefGoogle Scholar
  42. 42.
    S. Luo, J. Xu, T.J. Lim, R. Zhang, Capacity region of MISO broadcast channel for simultaneous wireless information and power transfer. IEEE Trans. Commun. 63(10), 3856–3868 (2015)CrossRefGoogle Scholar
  43. 43.
    X. Zhou, C.K. Ho, R. Zhang, Wireless information and power transfer in multiuser OFDM systems. IEEE Trans. Wirel. Commun. 13(4), 2282–2294 (2014)CrossRefGoogle Scholar
  44. 44.
    K. Huang, E. Larsson, Simultaneous information and power transfer for broadband wireless systems. IEEE Trans. Signal Process. 61(23), 5972–5986 (2013)MathSciNetCrossRefGoogle Scholar
  45. 45.
    H. Ju, R. Zhang, Throughput maximization in wireless powered communication networks. IEEE Trans. Wirel. Commun. 13(1), 418–428 (2014)CrossRefGoogle Scholar
  46. 46.
    I. Krikidis, Simultaneous information and energy transfer in large-scale networks with/without relaying. IEEE Trans. Commun. 62(3), 900–912 (2014)CrossRefGoogle Scholar
  47. 47.
    W. Liu, X. Zhou, S. Durrani, P. Popovski, Secure communication with a wireless-powered friendly jammer. IEEE Trans. Wirel. Commun. 15(1), 401–415 (2016)CrossRefGoogle Scholar
  48. 48.
    W. Liu, X. Zhou, S. Durrani, H. Mehrpouyan, S.D. Blostein, Energy harvesting wireless sensor networks: delay analysis considering energy costs of sensing and transmission. IEEE Trans. Wirel. Commun. 15(7), 4635–4650 (2016)Google Scholar
  49. 49.
    A. Nasir, X. Zhou, S. Durrani, R. Kennedy, Wireless-powered relays in cooperative communications: time-switching relaying protocols and throughput analysis. IEEE Trans. Commun. 63(5), 1607–1622 (2015)CrossRefGoogle Scholar
  50. 50.
    Y. Zeng, R. Zhang, Optimized training design for wireless energy transfer. IEEE Trans. Commun. 63(2), 536–550 (2015)CrossRefGoogle Scholar
  51. 51.
    Y. Zeng, R. Zhang, Optimized training for net energy maximization in multi-antenna wireless energy transfer over frequency-selective channel. IEEE Trans. Commun. 63(6), 2360–2373 (2015)CrossRefGoogle Scholar
  52. 52.
    J. Xu, R. Zhang, A general design framework for MIMO wireless energy transfer with limited feedback. IEEE Trans. Signal Process. 64(10), 2475–2488 (2016)MathSciNetCrossRefGoogle Scholar
  53. 53.
    M. Costa, M. Codreanu, A. Ephremides, Age of information with packet management, in Proceedings of ISIT, June (2014), pp. 1583–1587Google Scholar
  54. 54.
    S. Kaul, R. Yates, M. Gruteser, Real-time status: How often should one update? in Proceedings of IEEE INFOCOM, March (2012), pp. 2731–2735Google Scholar
  55. 55.
    Y. Sun, E. Uysal-Biyikoglu, R. Yates, C.E. Koksal, N.B. Shroff, Update or wait: how to keep your data fresh, in Proceedings of IEEE INFOCOM, April (2016), pp. 1–9Google Scholar
  56. 56.
    P. Lee, Z.A. Eu, M. Han, H. Tan, Empirical modeling of a solar-powered energy harvesting wireless sensor node for time-slotted operation, in Proceedings of IEEE WCNC, March (2011), pp. 179–184Google Scholar
  57. 57.
    Z. Ding, S. Perlaza, I. Esnaola, H.V. Poor, Power allocation strategies in energy harvesting wireless cooperative networks. IEEE Trans. Wirel. Commun. 13(2), 846–860 (2014)CrossRefGoogle Scholar
  58. 58.
    A.J. Goldsmith, Wireless Communications (Cambridge University Press, New York, 2005)CrossRefGoogle Scholar
  59. 59.
    W. Liu, X. Zhou, S. Durrani, H. Mehrpouyan, S.D. Blostein, Performance of wireless-powered sensor transmission considering energy cost of sensing, in Proceedings of IEEE GLOBECOM, December (2015), pp. 1–7Google Scholar
  60. 60.
    R. Durrett, Probability: Theory and Examples (Cambridge University Press, Cambridge, 2010)CrossRefMATHGoogle Scholar
  61. 61.
    MICAz, Crossbow Technology (2006). [Online]. Available: http://www.openautomation.net/uploadsproductos/micaz-datasheet.pdf
  62. 62.
    F. Zhang, V. Lau, Closed-form delay-optimal power control for energy harvesting wireless system with finite energy storage. IEEE Trans. Signal Process. 62(21), 5706–5715 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Research School of EngineeringThe Australian National UniversityCanberraAustralia
  2. 2.College of Engineering and Computer ScienceThe Australian National UniversityCanberraAustralia

Personalised recommendations