Skip to main content
  • 1283 Accesses

Abstract

The energy efficiency of systems in general determines its operational sustainability. Harvesting energy is a crucial technology for a variety of wireless systems that have limited access to a reliable electricity supply or recharging sources. As such, these devices need to harvest electricity from alternative sources such as the natural environment or wireless signals. A variety of wireless systems and devices fit this profile, from relatively power-hungry macro-base stations deployed in remote regions, to nano-scale sensors in vivo environments. The wide range of devices transverse multiple length scales and communicate across distance scales that vary by 9 orders of magnitude (from km to microns). It remains unclear what set of energy harvesting technologies are suitable. This chapter will review state-of-the-art technologies that allow multi-scale wireless devices to simultaneous harvest energy and transmit data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In urban areas, the deployment density of Wi-Fi APs has grown over the past decade to 400–1000 APs per square km.

References

  1. S. Bi, C. Ho, R. Zhang, Wireless powered communication: opportunities and challenges. IEEE Commun. Mag. 53(4), 117–125 (2015)

    Article  Google Scholar 

  2. M. Pinuela, P. Mitcheson, S. Lucyszyn, Ambient RF energy harvesting in urban and semi urban environments. IEEE Trans. Microwave Theory Tech. 61(7), 2715–2726 (2013)

    Article  Google Scholar 

  3. F. Iannello, O. Simeone, U. Spagnolini, Medium access control protocols for wireless sensor networks with energy harvesting. IEEE J. Sel. Areas Commun. 60(5), 1381–1389 (2012)

    Google Scholar 

  4. W. Brown, The history of power transmission by radio waves. IEEE Trans. Microwave Theory Tech. 32, 1230–1242 (1984)

    Article  Google Scholar 

  5. B. Han, R. Nielsen, C. Papadias, R. Prasad, Radio frequency energy harvesting for long lifetime wireless sensor networks, in International Symposium on Wireless Personal Multimedia Communications (2013), pp. 1–5

    Google Scholar 

  6. T. Ajmal, D. Jazani, B. Allen, Design of a compact RF energy harvester for wireless sensor networks, in IEEE Conference on Wireless Sensor Systems, June (2012), pp. 1–5

    Google Scholar 

  7. T. Ajmal, V. Dyo, B. Allen, D. Jazani, I. Ivanov, Design and optimisation of compact RF energy harvesting device for smart applications. Electron. Lett. 50(2), 111–113 (2014)

    Article  Google Scholar 

  8. S. Lee, R. Zhang, K. Huang, Opportunistic wireless energy harvesting in cognitive radio networks. IEEE Trans. Wirel. Commun. 12, 4788–4799, (2013)

    Article  Google Scholar 

  9. W. Guo, S. Wang, Mobile crowd-sensing wireless activity with measured interference power. IEEE Wirel. Commun. Lett. 2, 539–542 (2013)

    Article  Google Scholar 

  10. I. Krikidis, Simultaneous information and energy transfer in large-scale networks with/without relaying. IEEE Trans. Commun. 62, 900–912 (2014)

    Article  Google Scholar 

  11. W. Guo, S. Zhou, Y. Chen, S. Wang, X. Chu, Z. Niu, Simultaneous information and energy flow for IoT relay systems with crowd harvesting. IEEE Commun. Mag. 54(11), 143–149 (2016)

    Article  Google Scholar 

  12. EARTH, WP2.D2.3: energy efficiency analysis of the reference systems. Energy Aware Radio and Network Technologies (EARTH), Technical Report, December (2010)

    Google Scholar 

  13. S. Zaidi, A. Afzal, M. Hafeez, D. McLernon, M. Ghogho, Solar energy empowered cognitive metro cellular networks. IEEE Commun. Mag. 53(7), 70–77 (2015)

    Article  Google Scholar 

  14. O. Ozel, K. Shahzad, S. Ulukus, Optimal energy allocation for energy harvesting transmitters with hybrid energy storage and processing cost. IEEE Trans. Signal Process. 62(12), 3232–3245 (2014)

    Article  MathSciNet  Google Scholar 

  15. J. Fakidis, S. Videv, S. Kucera, H. Claussen, H. Haas, Indoor optical wireless power transfer to small cells at nighttime. IEEE J. Lightwave Technol. 34(13), 3236–3258 (2016)

    Article  Google Scholar 

  16. O. Ozel, K. Tutuncuoglu, J. Yang, S. Ulukus, A. Yenner, Transmission with energy harvesting nodes in fading wireless channels: optimal policies. IEEE J. Sel. Areas Commun. 29(8), 1732–1743 (2011)

    Article  Google Scholar 

  17. T. Le, K. Mayaram, T. Fiez, Efficient far-field radio frequency energy harvesting for passively powered sensor networks. IEEE J. Solid-State Circuits 43(5), 1287–1302 (2008)

    Article  Google Scholar 

  18. D. Pavone, A. Buonanno, M. D’Urso, F.G.D. Corte, Design considerations for radio frequency energy harvesting devices. Prog. Electromagn. Res. B 45, 19–35 (2012)

    Article  Google Scholar 

  19. E. Nan, X. Chu, W. Guo, J. Zhang, User data traffic analysis for 3G cellular networks, in IEEE International ICST Conference on Communications and Networking in China, August (2013), pp. 468–472

    Google Scholar 

  20. U. Olgun, C. Chen, J.L. Volakis, Investigation of rectenna array configurations for enhanced RF power harvesting. IEEE Antennas Wirel. Propag. Lett. 10, 262–265 (2011)

    Article  Google Scholar 

  21. M. Haenggi, Stochastic Geometry for Wireless Networks (Cambridge University Press, Cambridge, 2012)

    Book  MATH  Google Scholar 

  22. S. Wang, W. Guo, M. McDonnell, Distance distributions for real cellular networks, in IEEE Conference on Computer Communications (INFOCOM) (2014), pp. 181–182

    Google Scholar 

  23. M. Haenggi, On distances in uniformly random networks. IEEE Trans. Inf. Theory 51, 3584–3586 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. R. Ganti, M. Haenggi, Interference and outage in clustered wireless ad hoc networks. IEEE Trans. Inf. Theory 55(9), 4067–4086 (2009)

    Article  Google Scholar 

  25. S. Kumar, E. Hamed, D. Katabi, L.E. Li, LTE radio analytics made easy and accessible, in ACM Special Interest Group on Data Communication (SIGCOMM), August (2014), pp. 1–12

    Google Scholar 

  26. I. Pocsik, Lognormal distribution as the natural statistics of cluster systems. Eur. Phys. J. D At. Mol. Opt. Plasma Phys. 20(1), 395–397 (1991)

    Google Scholar 

  27. M. Laner, P. Svoboda, S. Schwarz, M. Rupp, Users in cells: a data traffic analysis, in IEEE Wireless Communications and Networking Conference (WCNC), April (2012), pp. 3063–3068

    Google Scholar 

  28. W. Guo, S. Wang, Radio-frequency energy harvesting potential: a stochastic analysis. Trans. Emerg. Telecommun. Technol. 24, 453–457 (2013)

    Article  Google Scholar 

  29. 3GPP, TR36.814 V9.0.0: further advancements for E-UTRA physical layer aspects (Release 9), 3GPP. Technical Report, March (2010)

    Google Scholar 

  30. D. Lee, S. Zhou, X. Zhong, Z. Niu, X. Zhou, H. Zhang, Spatial modeling of the traffic density in cellular networks. IEEE Wirel. Commun. 21(1), 80–88 (2014)

    Article  Google Scholar 

  31. I.F. Akyildiz, M. Pierobon, S. Balasubramaniam, Y. Koucheryavy, The internet of bio-nano things. IEEE Commun. Mag. 53(3), 32–40 (2015)

    Article  Google Scholar 

  32. D. Piraner, M. Abedi, B. Moser, A. Lee-Gosselin, M. Shapiro, Tunable thermal bioswitches for in vivo control of microbial therapeutics. Nat. Chem. Biol. 13(1), 75–80 (2016)

    Article  Google Scholar 

  33. N. Farsad, H. B. Yilmaz, A. Eckford, C.-B. Chae, W. Guo, A comprehensive survey of recent advancements in molecular communication. IEEE Commun. Surv. Tutorials 18(3), 1887–1919 (2016)

    Article  Google Scholar 

  34. N. Farsad, W. Guo, A. Eckford, Tabletop molecular communication: text messages through chemical signals. PLoS ONE 8, e82935 (2013)

    Article  Google Scholar 

  35. B. Koo, C. Lee, H. Yilmaz, N. Farsad, A. Eckford, C. Chae, Molecular MIMO: from theory to prototype. IEEE J. Sel. Areas Commun. 34(3), 600–614 (2016)

    Article  Google Scholar 

  36. S. Gowda, A. Reddy, X. Zhan, P. Ajayan, Building energy storage device on a single nanowire. ACS Nano Lett. 11(8), 3329–3333 (2011)

    Article  Google Scholar 

  37. M. Donohoe, S. Balasubramaniam, B. Jennings, J.M. Jornet, Powering in-body nanosensors with ultrasounds. IEEE Trans. Nanotechnol. 15(2), 151–154 (2016)

    Article  Google Scholar 

  38. S. Qiu, W. Guo, S. Wang, N. Farsad, A. Eckford, A molecular communication link for monitoring in confined environments, in IEEE International Conference on Communications (ICC) - Workshops, June (2014), pp. 718–723

    Google Scholar 

  39. W. Guo, C. Mias, N. Farsad, J.L. Wu, Molecular versus electromagnetic wave propagation loss in macro-scale environments. IEEE Trans. Mol. Biol. Multiscale Commun. (T-MBMC) 1(1), 18–25 (2015)

    Google Scholar 

  40. T.D. Wyatt, Fifty years of pheromones. Nature 457, 262–263 (2009)

    Article  Google Scholar 

  41. T. Nakano, A. Eckford, T. Haraguchi, Molecular Communication (Cambridge University Press, Cambridge, 2013)

    Book  Google Scholar 

  42. S. Chandrasekaran, D. Hougen, Swarm intelligence for cooperation of bio-nano robots using quorum sensing, in IEEE Bio Micro and Nanosystems Conference, January (2006), p. 141

    Google Scholar 

  43. A. Mafra-Neto R.T. Carde, Fine-scale structure of pheromone plumes modulates upwind orientation of flying moths. Nature 369, 142–144 (1994)

    Article  Google Scholar 

  44. P. Knusel, M. Carlsson, B. Hansson, T. Pearce, P. Verschure, Time and space are complementary encoding dimensions in the moth antennal lobe. Comput. Neural Syst. 18, 35–62 (2007)

    Article  Google Scholar 

  45. M. Cole, Z. Racz, J. Gardner, T. Pearce, A novel biomimetic infochemical communication technology: from insects to robots, in IEEE Sensors (2012), pp. 1–4

    Google Scholar 

  46. H.B. Yilmaz, A.C. Heren, T. Tugcu, C.-B. Chae, Three-dimensional channel characteristics for molecular communications with an absorbing receiver. IEEE Commun. Lett. 18(6),929–930 (2014)

    Article  Google Scholar 

  47. I.F. Akyildiz, F. Brunetti, C. Blazquez, Nanonetworks: a new communication paradigm. Elsevier Comput. Netw. 52, 2260–2279 (2008)

    Article  Google Scholar 

  48. I. Llatser, A. Cabellos-Aparicio, M. Pierobon, Detection techniques for diffusion-based molecular communication. IEEE J. Sel. Areas Commun. 31(12), 726–734 (2013)

    Article  Google Scholar 

  49. L. Felicetti, M. Femminella, G. Reali, T. Nakano, A.V. Vasilakos, TCP-like molecular communications. IEEE J. Sel. Areas Commun. 32(12), 2354–2367 (2014)

    Article  Google Scholar 

  50. B. Atakan, O. Akan, An information theoretical approach for molecular communication, in IEEE Bionetics Conference, December (2007), pp. 33–40

    Google Scholar 

  51. K. Srinivas, A. Eckford, R. Adve, Molecular communication in fluid media: the additive inverse Gaussian noise channel. IEEE Trans. Inf. Theory 8, 4678–4692 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  52. M. Pierobon, I.F. Akyildiz, A physical end-to-end model for molecular communication in nanonetworks. IEEE J. Sel. Areas Commun. 28(4), 602–611 (2010)

    Article  Google Scholar 

  53. S. Hiyama, Y. Moritani, T. Suda, R. Egashira, A. Enomoto, M. Moore, T. Nakano, Molecular communication, in Technical Proceedings of the 2005 NSTI Nanotechnology Conference and Trade Show, vol. 3 (2005), pp. 391–394

    Google Scholar 

  54. P. Lio, S. Balasubramaniam, Opportunistic routing through conjugation in bacteria communication nanonetwork. Elsevier Nano Commun. Netw. 3, 36–45 (2012)

    Article  Google Scholar 

  55. A. Coskun, M. Banaszak, R. Astumian, J. Stoddart, B. Grybowski, Great expectations: can artificial molecular machines deliver on their promise. Chem. Soc. Rev. 41(1), 19–30 (2012)

    Article  Google Scholar 

  56. T. Furubayashi, T. Nakano, A. Eckford, Y. Okaie, T. Yomo, Packet fragmentation and reassembly in molecular communication. IEEE Trans. Nanobiosci. 15, 284–288 (2016)

    Article  Google Scholar 

  57. M.S. Kuran, H.B. Yilmaz, T. Tugcu, B.O. Edis, Energy model for communication via diffusion in nanonetworks. Nano Commun. Netw. 1(2), 86–95 (2010)

    Article  Google Scholar 

  58. J. Jornet, I. Akyildiz, Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the terahertz band. IEEE Trans. Wirel. Commun. 10(10), 3211–3221 (2011)

    Article  Google Scholar 

  59. G. Auer, V. Giannini, C. Desset, I. Godor, P. Skillermark, M. Olsson, M. Imran, D. Sabella, M. Gonzalez, O. Blume, A. Fehske, How much energy is needed to run a wireless network? IEEE Commun. Mag. 18(5), 40–49 (2011)

    Google Scholar 

  60. Y. Deng, W. Guo, A. Noel, M. Elkashlan, A. Nallanathan, Enabling energy efficient molecular communication via molecule energy transfer. IEEE Commun. Lett. 21(2), 254–257 (2016)

    Article  Google Scholar 

  61. A. Noel, K.C. Cheung, R. Schober, Improving receiver performance of diffusive molecular communication with enzymes. IEEE Trans. NanoBiosci. 13(1), 31–43 (2014)

    Article  Google Scholar 

  62. S. Akbar, Y. Deng, A. Nallanathan, M. Elkashlan, Downlink and uplink transmission in K-tier heterogeneous cellular network with simultaneous wireless information and power transfer, in IEEE Global Communications Conference (GLOBECOM), 2015

    Google Scholar 

  63. W. Guo, Y. Deng, H.B. Yilmaz, N. Farsad, M. Elkashlan, C.-B. Chae, A. Eckford, A. Nallanathan, SMIET: simultaneous molecular information and energy transfer. IEEE Wirel. Commun. (2017, to appear)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weisi Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Guo, W., Deng, Y., Nallanathan, A., Li, B., Zhao, C. (2018). Multi-Scale Energy Harvesting. In: Jayakody, D., Thompson, J., Chatzinotas, S., Durrani, S. (eds) Wireless Information and Power Transfer: A New Paradigm for Green Communications. Springer, Cham. https://doi.org/10.1007/978-3-319-56669-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56669-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56668-9

  • Online ISBN: 978-3-319-56669-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics