Skip to main content

Introduction, Recent Results, and Challenges in Wireless Information and Power Transfer

  • Chapter
  • First Online:
Wireless Information and Power Transfer: A New Paradigm for Green Communications

Abstract

The first effort to transmit energy wirelessly with the purpose of doing so is attributed to N. Tesla at his laboratory in Long Island, New York, USA. Then, about 30 years after J. Maxwell had demonstrated the potentials in 1873 the conveyance of energy trough vacuum via electromagnetic waves, corroborated in principle 15 years later by H. Hertz. The current expansion of the WPT via radio frequency beam owes to William Brown in 1960s using microwave technology developed during the World War II. Wireless Power Transfer (WPT) is gaining traction in many application domains because it offers the possibility of batteryless operation and wireless charging. Although wireless charging frequently gets the attention of the media, batteryless operation can bring major benefits for the environment and the massive deployment of wireless sensors in the Internet of Things (IoT). The salient feature of harvesting energy from electromagnetic radiation allows to gather energy even from ambient sources. Interference exploitation can also form a useful recourse at the expense of quality of experience. This chapter provides an overview of simultaneous wireless information and power transfer (SWIPT) systems with a particular focus on emerging techniques associated with SWIPT. We explore various key design issues in the development of SWIPT assisted emerging wireless communications technologies including the ones related to 5G communications. Chapter also provides interesting future research ideas and directions for interesting researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. EU funded research project FP7 METIS. (Mobile and wireless communications Enablers for the Twenty-twenty Information Society, Nov 2012 to Apr 2015), https://www.metis2020.com.

  2. A. Fehske, G. Fettweis, J. Malmodin, G. Biczók, The global footprint of mobile communications: The ecological and economic perspective. IEEE Commun. Mag. 49(8), 55–62 (2011)

    Article  Google Scholar 

  3. N. Shinohara, Power without wires. IEEE Microw. Mag. 12(7), S64–S73 (2011)

    Article  Google Scholar 

  4. X. Zhou, R. Zhang, C.K. Ho, Wireless information and power transfer: Architecture design and rate-energy tradeoff, in IEEE Global Communications Conference, 2012, pp. 3982–3987

    Google Scholar 

  5. J.R. Smith, Wirelessly Powered Sensor Networks and Computational RFID (Springer, New York, 2013)

    Book  Google Scholar 

  6. K. Huang, V. Lau, Enabling wireless power transfer in cellular networks: Architecture, modeling and deployment. IEEE Trans. Wirel. Commun. 13(2), 902–912 (2014)

    Article  Google Scholar 

  7. P. Nintanavongsa, M. Naderi, K. Chowdhury, Medium access control protocol design for sensors powered by wireless energy transfer, in Proceedings IEEE INFOCOM, 2013

    Google Scholar 

  8. D.W.K. Ng, E.S. Lo, R. Schober, Wireless information and power transfer: Energy efficiency optimization in OFDMA systems. IEEE Trans. Wirel. Commun. 12(12), 6352–6370 (2013)

    Article  Google Scholar 

  9. Z. Ding, S.M. Perlaza, I. Esnaola, H.V. Poor, Power allocation strategies in energy harvesting wireless cooperative networks. IEEE Trans. Wirel. Commun. 13(2), 846–860 (2014)

    Article  Google Scholar 

  10. I. Krikidis, Simultaneous information and energy transfer in large-scale networks with/without relaying. IEEE Trans. Commun. 62(3), 900–912 (2014)

    Article  Google Scholar 

  11. H. Nishimoto, Y. Kawahara, T. Asami, Prototype implementation of ambient RF energy harvesting wireless sensor networks, in 2010 IEEE Sensors, Kona, HI, 2010, pp. 1282–1287

    Google Scholar 

  12. X. Zhang, H. Jiang, L. Zhang, C. Zhang, Z. Wang, X. Chen, An energy-efficient ASIC for wireless body sensor networks in medical applications. IEEE Trans. Biomed. Circ. Syst 4(1), 11–18 (2010)

    Article  Google Scholar 

  13. R.C. Johnson, H.A. Ecker, J.S. Hollis, Determination of far-field antenna patterns from near-field measurements. Proc. IEEE 61(12), 1668–1694 (1973)

    Article  Google Scholar 

  14. R. Zhang, C.K. Ho, MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Trans. Wirel. Commun. 12(5), 1989–2001 (2013)

    Article  Google Scholar 

  15. D. Ng, E. Lo, R. Schober, Robust beamforming for secure communication in systems with wireless information and power transfer. IEEE Trans. Wirel. Commun. 13(8), 4599–4615 (2014)

    Article  Google Scholar 

  16. N.M.B. Medepally, Voluntary energy harvesting relays and selection in cooperative wireless networks. IEEE Trans. Wirel. Commun. 9, 3543–3553 (2010)

    Article  Google Scholar 

  17. X. Lu, P. Wang, D. Niyato, D.I. Kim, Z. Han, Wireless networks with RF energy harvesting: A contemporary survey. IEEE Commun. Surv. Tutor. 17(2), 757–789 (2015)

    Article  Google Scholar 

  18. X. Zhou, R. Zhang, C.K. Ho, Wireless information and power transfer: Architecture design and rate-energy tradeoff, in IEEE Transaction on Communications, 2008, pp. 4754–4767

    Google Scholar 

  19. A.A. Nasir, X. Zhou, S. Durrani, R.A. Kennedy, Relaying protocols for wireless energy harvesting and information processing. IEEE Trans. Wirel. Commun. 12(7), 3622–3636 (2013)

    Article  Google Scholar 

  20. H. Chen, Y. Li, J.L. Rebelatto, B.F. Uchoa-Filho, B. Vucetic, Harvest-then-cooperate: Wireless-powered cooperative communications. IEEE Trans. Signal Process. 63(7), 1700–1711 (2015)

    Article  MathSciNet  Google Scholar 

  21. Y. Liu, Wireless information and power transfer for multirelay-assisted cooperative communication. IEEE Commun. Lett. 20, 784–787 (2016)

    Article  Google Scholar 

  22. M. Zhang, Y. Liu, R. Zhang, Artificial noise aided secrecy information and power transfer in OFDMA systems. IEEE Trans. Wirel. Commun. 15, 3085–3096 (2016)

    Article  Google Scholar 

  23. G. Yang, C.K. Ho, R. Zhang, Y.L. Guan, Throughput optimization for massive mimo systems powered by wireless energy transfer. arXiv 1403, 3991 (2014)

    Google Scholar 

  24. I. Krikidis, G. Zhang, B. Ottersten, Harvest-use cooperative networks with half/full-duplex relaying, in Proceedings of IEEE Wireless Communications and Networking Conference, 2013, pp. 4256–4260

    Google Scholar 

  25. A.A. Nasir, X. Zhou, S. Durrani, R.A. Kennedy, Relaying protocols for wireless energy harvesting and information processing, in IEEE Transaction on Wireless Communication, 2013, pp. 3622—3636

    Google Scholar 

  26. H. Stockman, Communication by means of reflected power. Proc. IRE 36(10), 1196–1204 (1948)

    Article  Google Scholar 

  27. N. Fasarakis-Hilliard, P.N. Alevizos, A. Bletsas, “Coherent detection and channel coding for bistatic scatter radio sensor networking, in 2015 IEEE International Conference on Communications (ICC), London, 2015, pp. 4895–4900

    Google Scholar 

  28. V. Liu, A. Parks, V. Talla, S. Gollakota, D. Wetherall, J.R. Smith, Ambient backscatter: Wireless communication out of thin air, in Proceedings ACM SIGCOMM, 2013

    Google Scholar 

  29. G. Vannucci, A. Bletsas, D. Leigh, A software-defined radio system for backscatter sensor networks. IEEE Trans. Wirel. Commun. 7(6), 2170–2179 (2008)

    Article  Google Scholar 

  30. C. Konstantopoulos, E. Koutroulis, N. Mitianoudis, A. Bletsas, Converting a plant to a battery and wireless sensor with scatter radio and ultra-low cost. IEEE Trans. Instrum. Meas. 65(2), 388–398 (Feb. 2016)

    Article  Google Scholar 

  31. M. Alodeh, S. Chatzinotas, B. Ottersten, in 2015 IEEE Global Communications Conference (GLOBEM), Constructive Interference through Symbol Level Precoding for Multi-Level Modulation, 2016, pp. 1–6

    Google Scholar 

  32. M. Alodeh, S. Chatzinotas, B. Ottersten, Constructive multiuser interference in symbol level precoding for the MISO downlink channel. IEEE Trans. Signal Process. 63(9), 2239–2252 (2015)

    Article  MathSciNet  Google Scholar 

  33. D. Kwon, H.S. Kang, D.K. Kim, Robust interference exploitation-based precoding scheme with quantized CSIT. IEEE Commun. Lett. 20(4), 780–783 (2016)

    Article  Google Scholar 

  34. G. Pan, C. Tang, T. Li, Y. Chen, Secrecy performance analysis for SIMO simultaneous wireless information and power transfer systems. IEEE Trans. Commun. 63(9), 3423–3433 (2015)

    Article  Google Scholar 

  35. G. Pan, H. Lei, Y. Deng, L. Fan, J. Yang, Y. Chen, Z. Ding, On secrecy performance of MISO SWIPT systems with TAS and imperfect CSI. IEEE Trans. Commun. 64, 3831–3843 (2016)

    Article  Google Scholar 

  36. L. Wang, M. Elkashlan, R.W. Heath, M. Di Renzo, K.K. Wong, Millimeter wave power transfer and information transmission, in 2015 IEEE Global Communications Conference (GLOBECOM), San Diego, CA, 2015

    Google Scholar 

  37. H. Xing, K. Wong, A. Nallanathan, R. Zhang, Wireless powered cooperative jamming for secrecy multi-AF relaying networks. IEEE Trans on Wireless Commun 1(4), 372–375 (2012)

    Article  Google Scholar 

  38. L. Dong, Z. Han, A. Petropulu, H. Poor, Improving wireless physical layer security via cooperating relays. IEEE Trans. Signal Process. 58(3), 1875–1888 (2010)

    Article  MathSciNet  Google Scholar 

  39. Y. Yang, Q. Li, W.-K. Ma, J. Ge, P.C. Ching, Cooperative secure beamforming for AF relay networks with multiple eavesdroppers. IEEE Signal. Process. Lett. 20(1), 35–38 (2013)

    Article  Google Scholar 

  40. J. Li, A.P. Petropulu, S. Weber, On cooperative relaying schemes for wireless physical layer security. IEEE Trans. Signal Process. 59(10), 4985–4997 (2011)

    Article  MathSciNet  Google Scholar 

  41. L. Liu, R. Zhang, K.C. Chua, Secrecy wireless information and power transfer with MISO beamforming. IEEE Trans. Signal. Proc. 62(7), 1850–1863 (2014)

    Article  MathSciNet  Google Scholar 

  42. H. Xing, L. Liu, R. Zhang, Secrecy wireless information and power transfer in fading wiretap channel, in Proceedings in IEEE International Conference on Communication (ICC), June 2014, pp. 5402–5407

    Google Scholar 

  43. M. Zhang, Y. Liu, Energy harvesting for physical-layer security in OFDMA networks. IEEE Trans Info Forensics Sec 11(1), 154–162 (2015)

    Article  Google Scholar 

  44. T.A. Khan, A. Alkhateeb, R.W. Heath, Millimeter wave energy harvesting. IEEE Trans. Wirel. Commun. 15(9), 6048–6062 (2016)

    Article  Google Scholar 

  45. S. Ladan, A.B. Guntupalli, K. Wu, A high-efficiency 24 GHz rectenna development towards millimeter-wave energy harvesting and wireless power transmission. IEEE Trans. Circuits. Syst. Regular Papers 61(12), 3358–3366 (2014)

    Article  Google Scholar 

  46. M. Peer, N. Jain, V.A. Bohara, A hybrid spectrum sharing protocol for energy harvesting wireless sensor nodes, in IEEE 17th international workshop on signal processing advances in wireless communications (SPAWC), 2016, pp. 1–6

    Google Scholar 

  47. V. Gungor, G. Hancke, Industrial wireless sensor networks: Challenges, design principles, and technical approaches. IEEE Trans. Ind. Electron. 56(10), 4258–4265 (2009)

    Article  Google Scholar 

  48. I.F. Akyildiz, T. Melodia, K. Chowdhury, A survey on wireless multimedia sensor networks. Comput. Netw. 51(4), 921–960 (2007)

    Article  Google Scholar 

  49. B. Tong, Z. Li, G. Wang, W. Zhang, How wireless power charging technology affects sensor network deployment and routing, in Proceedings of IEEE International Conference on Distributed Computing Systems (ICDCS), Genoa, Italy, 2010, pp. 438–447

    Google Scholar 

  50. H. Nishimoto, Y. Kawahara, T. Asami, Prototype implementation of ambient RF energy harvesting wireless sensor networks, in Proceedings of IEEE Sensors, Kona, HI, 2010

    Google Scholar 

  51. Z. Popovic, E.A. Falkenstein, D. Costinett, R. Zane, Low power far-field wireless powering for wireless sensors. Proc. IEEE 101(6), 1397–1409 (2013)

    Article  Google Scholar 

  52. S. Gua, C. Wang, Y. Yang, Mobile data gathering with wireless energy replenishment in rechargeable sensor networks, in International Conference on Computer Communications, 2013, pp. 1932–1940

    Google Scholar 

  53. S. Gua, C. Wang, Y. Yang, Joint mobile data gathering and energy provisioning in wireless rechargeable sensor networks. IEEE Trans. Mob. Comput. 13(12), 2836–2852 (2014)

    Article  Google Scholar 

  54. C. Wang, J. Li, F. Ye, Y. Yang, Netwrap: An ndn based real-time wireless recharging framework for wireless sensor networks. IEEE Trans. Mob. Comput. 13(6), 1283–1297 (2014)

    Article  Google Scholar 

  55. L. Xie, Y. Shi, Y.T. Hou, H.D. Sherali, Making sensor networks immortal: An energy renewal approach with wireless power transfer. IEEE ACM Trans. Networking 20(6), 1748–1761 (2012)

    Article  Google Scholar 

  56. S. Zhang, J. Wu, S. Lu, Collaborative mobile charging. IEEE Trans. Comput. 64(3), 654–667 (2015)

    Article  MathSciNet  Google Scholar 

  57. E.B. Johnson, C. Detweiler, Charge selection algorithms for maximizing sensor network life with UAV-based limited wireless recharging, in 2013 IEEE Eighth International Conference on Intelligent Sensors, Sensor Networks and Information Processing, Melbourne, VIC, 2013, pp. 159–164

    Google Scholar 

  58. M.Y. Naderi, K.R. Chowdhury, S. Basagni, W. Heinzelman, S. De, S. Jana, Experimental study of concurrent data and wireless energy transfer for sensor networks, in 2014 IEEE Global Communications Conference, Austin, TX, 2014, pp. 2543–2549

    Google Scholar 

  59. M.Y. Naderi, K.R. Chowdhury, S. Basagni, W. Heinzelman, S. De, S. Jana, Experimental study of concurrent data and wireless energy transfer for sensor networks, in 2014 IEEE Global Communications Conference, Austin, TX, 2014, pp. 2543–2549

    Google Scholar 

  60. D. Niyato, D.I. Kim, P. Wang, L. Song, A novel caching mechanism for Internet of Things (IoT) sensing service with energy harvesting, in 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, 2016, pp. 1–6

    Google Scholar 

  61. H. Kawabata, K. Ishibashi, S. Vuppala, G. Abreu, Robust relay selection for large-scale energy harvesting IoT networks. IEEE Int. Things J. (99), 1

    Google Scholar 

  62. J. Rinne, J. Keskinen, P.R. Berger, D. Lupo, M. Valkama, Feasibility and fundamental limits of energy-harvesting based M2M communications, in 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Valencia, Spain, 2016, pp. 1–6

    Google Scholar 

  63. H.G. Lee, N. Chang, Powering the IoT: Storage-less and converter-less energy harvesting, in 20th Asia and South Pacific Design Automation Conference, Chiba, 2015, pp. 124–129

    Google Scholar 

  64. P. Grover, A. Sahai, Shannon meets Tesla: Wireless information and power transfer, in 2010 IEEE International Symposium on Information Theory, 2010, pp. 2363–2367

    Google Scholar 

  65. K. Huang, E. Larsson, Simultaneous information and power transfer for broadband wireless systems. IEEE Trans. Signal Process. 61(23), 5972–5986 (2013)

    Article  MathSciNet  Google Scholar 

  66. D.W.K. Ng, E.S. Lo, R. Schober, Wireless information and power transfer: Energy efficiency optimization in OFDMA systems. IEEE Trans. Wirel. Commun. 12(12), 6352–6370 (December 2013)

    Article  Google Scholar 

  67. X. Zhou, R. Zhang, C.K. Ho, Wireless information and power transfer in multiuser OFDM systems. IEEE Trans. Wirel. Commun. 13(4), 2282–2294 (2014)

    Article  Google Scholar 

  68. P. Grover, A. Sahai, Shannon meets Tesla: wireless information and power transfer, in Proceedings IEEE International Symposium on Information Theory (ISIT), Austin, TX, 2010

    Google Scholar 

  69. H. Wang, W. Wang, X. Chen, Z. Zhang, Wireless information and energy transfer in interference aware massive MIMO systems, in 2014 IEEE Global Communications Conference, Austin, TX, 2014, pp. 2556–2561

    Google Scholar 

  70. G. Yang et al., Throughput optimization for massive mimo systems powered by wireless energy transfer. IEEE J. Select. Areas Commun. 33(8), 1640–1650 (2015)

    Google Scholar 

  71. J. Li, H. Zhang, D. Li, H. Chen, On the performance of wireless-energy-transfer-enabled massive mimo systems with superimposed pilot-aided channel estimation. IEEE Access 3, 2014–2027 (2015)

    Article  Google Scholar 

  72. X. Chen, X. Wang, X. Chen, Energy-efficient optimization for wireless information and power transfer in large-scale MIMO systems employing energy beamforming. IEEE Wireless Commun. Lett. 2(6), 667–670 (2013)

    Article  Google Scholar 

  73. G. Aruma Baduge, E. Larsson, V. Poor, Wireless information and power transfer in multi-way massive MIMO relay networks. IEEE Trans. Wirel. Commun. 99, 1

    Google Scholar 

  74. R. Blasco-Serrano, R. Thobaben, M. Andersson, V. Rathi, M. Skoglund, Polar codes for cooperative relaying. IEEE Trans. Commun. 60(11), 3263–3273 (2012)

    Article  Google Scholar 

  75. I. Tal, A. Vardy, How to construct polar codes. IEEE Trans. Inf. Theory 59(10), 6562–6582 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  76. H. Kong, C. Xing, S. Zhao, P. Shi, Cooperative coding scheme using polar codes, in Proceedings of 2012 2nd International Conference on Computer Science and Network Technology, Changchun, 2012, pp. 602–606

    Google Scholar 

  77. B. Yuan, K.K. Parhi, Early stopping criteria for energy-efficient low-latency belief-propagation polar code decoders. IEEE Trans. Signal Process. 62(24), 6496–6506 (2014)

    Article  MathSciNet  Google Scholar 

  78. K. He, J. Sha, L. Li, Z. Wang, Low power decoder design for QC-LDPC codes, in Proceedings of 2010 IEEE International Symposium on Circuits and Systems, Paris, 2010, pp. 3937–3940

    Google Scholar 

  79. Y.S. Park, D. Blaauw, D. Sylvester, Z. Zhang, Low-power high-throughput LDPC decoder using non-refresh embedded DRAM. IEEE J. Solid State Circuits 49(3), 783–794 (2014)

    Article  Google Scholar 

  80. J. Kaza, C. Chakrabarti, Design and implementation of low-energy turbo decoders. IEEE Trans. Very Large Scale Integr. (VLSI) Sys. 12(9), 968–977 (2004)

    Article  Google Scholar 

  81. R.G. Maunder, The 5G channel code contenders, AccelerComm White Paper, Aug 2016, 1–13

    Google Scholar 

  82. D.K. Nguyen, D.N.K. Jayakody, S. Chatzinotas, J. Thompson, J. Li, Wireless energy harvesting assisted two-way cognitive realy networks: Protocol design and performance analysis, in IEEE Access, 2016

    Google Scholar 

  83. S. Lee, R. Zhang, K. Huang, Opportunistic wireless energy harvesting in cognitive radio networks. IEEE Trans. Wirel. Commun. 12(9), 4788–4799 (2013)

    Article  Google Scholar 

  84. V.P. Tuan, S.Q. Nguyen, H.Y. Kong, Performance analysis of energy-harvesting relay selection systems with multiple antennas in presence of transmit hardware impairments, in International Conference SUBMITTED on Advanced Technologies for Communications (ATC), Hanoi, Vietnam, 2016, pp. 126–130

    Google Scholar 

  85. S.K. Sharma, T.E. Bogale, S. Chatzinotas, X. Wang, L.B. Le, Physical layer aspects of wireless IoT, in International Symposium on Wireless Communication Systems (ISWCS), Poznan, pp. 304–308, 2016

    Google Scholar 

  86. URSI, White paper on solar power satellite (SPS) systems and report of the ursi inter-commission working group on SPS, in URSI Inter-commission Working Group on SPS, 2007

    Google Scholar 

  87. K. Miyashiro, F. Inoue, K. Maki, K. Tanaka, S. Sasaki, K. Komurasaki, Sequentially rotated array antenna for wireless power transmission to an MAV (in Japanese), in IEICE Technical Report, WPT2012–30, 2012, pp. 59–61

    Google Scholar 

Download references

Acknowledgements

This work was partially funded by the Russian Federal budget funds for research work (Fundamental research, applied research and experimental development) through the grant No. 3942 and performed in accordance with Russian Government Resolutions No. 2014/226 of 2017, FNR-FNRS bilateral project “InWIP-NETs: Integrated Wireless Information and Power Networks. Authors also acknowledged the contribution of the COST Action on Inclusion Radio Communications (IRACON) CA15104.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dushantha Nalin K. Jayakody .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Jayakody, D.N.K., Sharma, S.K., Chatzinotas, S. (2018). Introduction, Recent Results, and Challenges in Wireless Information and Power Transfer. In: Jayakody, D., Thompson, J., Chatzinotas, S., Durrani, S. (eds) Wireless Information and Power Transfer: A New Paradigm for Green Communications. Springer, Cham. https://doi.org/10.1007/978-3-319-56669-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56669-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56668-9

  • Online ISBN: 978-3-319-56669-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics