Skip to main content

Pollen Tip Growth: Control of Cellular Morphogenesis Through Intracellular Trafficking

  • Chapter
  • First Online:
Pollen Tip Growth

Abstract

The control of cellular growth in pollen tubes occurs through the fine-tuning of intracellular transport and secretion processes. This does not only apply to the basic genesis of the cylindrical cell through polar expansion but also to the pollen tube’s specialized skills including its capacity to respond to directional guidance cues and its ability to perform invasive growth. The control of these specialized activities by intracellular trafficking occurs through the strategic deposition of cell wall material and cell wall modifying agents that soften or stiffen the wall with the aim to regulate the cell wall’s mechanical properties both in time and space. Directional and invasive growth of the pollen tube is crucial for successful sperm delivery and fertilization. The mechanisms underlying the regulation and logistics of the endomembrane trafficking in the pollen tube therefore have a direct impact on pollen tube elongation and male fertility. Here, we relate pollen tube morphogenesis and its biological functionality to the intracellular processes that control cellular growth behavior and allow the cell to respond to environmental cues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CalSs:

Callose synthases

CESAs:

Cellulose synthases A

FRAP:

Fluorescence recovery after photobleaching

HG:

Homogalacturonan

PGs:

Polygalacturonases

PME:

Pectin methyl esterase

PMEIs:

Pectin methyl esterase inhibitors

RIPs:

ROP-interacting partners

ROPs:

Rho family of GTPases

SNAREs:

Soluble NSF attachment protein receptors

SYP:

Syntaxin of plants

TGN:

Trans-Golgi network

References

  • Abenza JF, Couturier E, Dodgson J, Dickmann J, Chessel A, Dumais J, Salas RE (2015) Wall mechanics and exocytosis define the shape of growth domains in fission yeast. Nat Commun 6:8400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abercrombie JM, O’Meara BC, Moffatt AR, Williams JH (2011) Developmental evolution of flowering plant pollen tube cell walls: callose synthase (CalS) gene expression patterns. Evodevo 2:14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agudelo CG, Sanati Nezhad A, Ghanbari M, Naghavi M, Packirisamy M, Geitmann A (2013) TipChip: a modular, MEMS-based platform for experimentation and phenotyping of tip-growing cells. Plant J 73:1057–1068

    Article  CAS  PubMed  Google Scholar 

  • Alabi AA, Tsien RW (2013) Perspectives on kiss-and-run: role in exocytosis, endocytosis, and neurotransmission. Annu Rev Physiol 75:393–422

    Article  CAS  PubMed  Google Scholar 

  • Anderson JR, Barnes WS, Bedinger P (2002) 2,6-Dichlorobenzonitrile, a cellulose biosynthesis inhibitor, affects morphology and structural integrity of petunia and lily pollen tubes. J Plant Physiol 159:61–67

    Article  CAS  Google Scholar 

  • Aouar L, Chebli Y, Geitmann A (2010) Morphogenesis of complex plant cell shapes: the mechanical role of crystalline cellulose in growing pollen tubes. Sex Plant Reprod 23:15–27

    Article  PubMed  Google Scholar 

  • Benkert R, Obermeyer G, Bentrup FW (1997) The turgor pressure of growing lily pollen tubes. Protoplasma 198:1–8

    Article  Google Scholar 

  • Bolduc JE, Lewis LJ, Aubin CE, Geitmann A (2006) Finite-element analysis of geometrical factors in micro-indentation of pollen tubes. Biomech Model Mechanobiol 5:227–236

    Article  PubMed  Google Scholar 

  • Bosch M, Hepler PK (2005) Pectin methylesterases and pectin dynamics in pollen tubes. Plant Cell 17:3219–3226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bosch M, Cheung AY, Hepler PK (2005) Pectin methylesterase, a regulator of pollen tube growth. Plant Physiol 138:1334–1346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bou Daher F, Geitmann A (2011) Actin is involved in pollen tube tropism through redefining the spatial targeting of secretory vesicles. Traffic 12:1537–1551

    Article  PubMed  CAS  Google Scholar 

  • Bove J, Vaillancourt B, Kroeger J, Hepler PK, Wiseman PW, Geitmann A (2008) Magnitude and direction of vesicle dynamics in growing pollen tubes using spatiotemporal image correlation spectroscopy and fluorescence recovery after photobleaching. Plant Physiol 147:1646–1658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brownfield L, Ford K, Doblin MS, Newbigin E, Read S, Bacic A (2007) Proteomic and biochemical evidence links the callose synthase in Nicotiana alata pollen tubes to the product of the NaGSL1 gene. Plant J 52:147–156

    Article  CAS  PubMed  Google Scholar 

  • Brownfield L, Wilson S, Newbigin E, Bacic A, Read S (2008) Molecular control of the glucan synthase-like protein NaGSL1 and callose synthesis during growth of Nicotiana alata pollen tubes. Biochem J 414:43–52

    Article  CAS  PubMed  Google Scholar 

  • Brux A, Liu TY, Krebs M, Stierhof YD, Lohmann JU, Miersch O, Wasternack C, Schumacher K (2008) Reduced V-ATPase activity in the trans-Golgi network causes oxylipin-dependent hypocotyl growth inhibition in Arabidopsis. Plant Cell 20:1088–1100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cai G, Faleri C, Del Casino C, Emons AMC, Cresti M (2011) Distribution of callose synthase, cellulose synthase, and sucrose synthase in tobacco pollen tube is controlled in dissimilar ways by actin filaments and microtubules. Plant Physiol 155:1169–1190

    Article  CAS  PubMed  Google Scholar 

  • Chapman LA, Goring DR (2010) Pollen-pistil interactions regulating successful fertilization in the Brassicaceae. J Exp Bot 61:1987–1999

    Article  CAS  PubMed  Google Scholar 

  • Chebli YG, Geitmann A (2007) Mechanical principles governing pollen tube growth. Funct Plant Sci Biotechnol 1:232–245

    Google Scholar 

  • Chebli Y, Kaneda M, Zerzour R, Geitmann A (2012) The cell wall of the Arabidopsis pollen tube--spatial distribution, recycling, and network formation of polysaccharides. Plant Physiol 160:1940–1955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chebli Y, Pujol L, Shojaeifard A, Brouwer I, van Loon JJ, Geitmann A (2013a) Cell wall assembly and intracellular trafficking in plant cells are directly affected by changes in the magnitude of gravitational acceleration. PLoS One 8:e58246

    Article  PubMed  PubMed Central  Google Scholar 

  • Chebli Y, Kroeger J, Geitmann A (2013b) Transport logistics in pollen tubes. Mol Plant 6:1037–1052

    Article  CAS  PubMed  Google Scholar 

  • Chen CY, Cheung AY, Wu HM (2003) Actin-depolymerizing factor mediates Rac/Rop GTPase-regulated pollen tube growth. Plant Cell 15:237–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen KM, Wu GL, Wang YH, Tian CT, Samaj J, Baluska F, Lin JX (2008) The block of intracellular calcium release affects the pollen tube development of Picea wilsonii by changing the deposition of cell wall components. Protoplasma 233:39–49

    Article  CAS  PubMed  Google Scholar 

  • Chen N, Qu X, Wu Y, Huang S (2009) Regulation of actin dynamics in pollen tubes: control of actin polymer level. J Integr Plant Biol 51:740–750

    Article  CAS  PubMed  Google Scholar 

  • Cheung AY, Wu HM (1999) Arabinogalactan proteins in plant sexual reproduction. Protoplasma 208:87–98

    Article  CAS  Google Scholar 

  • Cheung AY, Wu HM (2007) Structural and functional compartmentalization in pollen tubes. J Exp Bot 58:75–82

    Article  CAS  PubMed  Google Scholar 

  • Cheung AY, Wu HM (2008) Structural and signaling networks for the polar cell growth machinery in pollen tubes. Annu Rev Plant Biol 59:547–572

    Article  CAS  PubMed  Google Scholar 

  • Cheung AY, Duan QH, Costa SS, de Graaf BH, Di Stilio VS, Feijo J, Wu HM (2008) The dynamic pollen tube cytoskeleton: live cell studies using actin-binding and microtubule-binding reporter proteins. Mol Plant 1:686–702

    Article  CAS  PubMed  Google Scholar 

  • Cole RA, Synek L, Zarsky V, Fowler JE (2005) SEC8, a subunit of the putative Arabidopsis exocyst complex, facilitates pollen germination and competitive pollen tube growth. Plant Physiol 138:2005–2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dardelle F, Lehner A, Ramdani Y, Bardor M, Lerouge P, Driouich A, Mollet JC (2010) Biochemical and immunocytological characterizations of Arabidopsis pollen tube cell wall. Plant Physiol 153:1563–1576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dearnaley JDW, Daggard GA (2001) Expression of a polygalacturonase enzyme in germinating pollen of Brassica napus. Sex Plant Reprod 13:265–271

    Article  CAS  Google Scholar 

  • Derksen J, Janssen GJ, Wolters-Arts M, Lichtscheidl I, Adlassnig W, Ovecka M, Doris F, Steer M (2011) Wall architecture with high porosity is established at the tip and maintained in growing pollen tubes of Nicotiana tabacum. Plant J 68:495–506

    Article  CAS  PubMed  Google Scholar 

  • Dettmer J, Schubert D, Calvo-Weimar O, Stierhof YD, Schmidt R, Schumacher K (2005) Essential role of the V-ATPase in male gametophyte development. Plant J 41:117–124

    Article  CAS  PubMed  Google Scholar 

  • Dettmer J, Hong-Hermesdorf A, Stierhof YD, Schumacher K (2006) Vacuolar H+-ATPase activity is required for endocytic and secretory trafficking in Arabidopsis. Plant Cell 18:715–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doblin MS, Kurek I, Jacob-Wilk D, Delmer DP (2002) Cellulose biosynthesis in plants: from genes to rosettes. Plant Cell Physiol 43:1407–1420

    Article  CAS  PubMed  Google Scholar 

  • Doyle SM, Haeger A, Vain T, Rigal A, Viotti C, Langowska M, Ma Q, Friml J, Raikhel NV, Hicks GR, Robert S (2015) An early secretory pathway mediated by GNOM-LIKE 1 and GNOM is essential for basal polarity establishment in Arabidopsis thaliana. Proc Natl Acad Sci U S A 112:806–815

    Article  CAS  Google Scholar 

  • Driouich A, Follet-Gueye ML, Bernard S, Kousar S, Chevalier L, Vicre-Gibouin M, Lerouxel O (2012) Golgi-mediated synthesis and secretion of matrix polysaccharides of the primary cell wall of higher plants. Front Plant Sci 3:79. doi:10.3389/fpls.2012.00079

    Article  PubMed  PubMed Central  Google Scholar 

  • Enami K, Ichikawa M, Uemura T, Kutsuna N, Hasezawa S, Nakagawa T, Nakano A, Sato MH (2009) Differential expression control and polarized distribution of plasma membrane-resident SYP1 SNAREs in Arabidopsis thaliana. Plant Cell Physiol 50:280–289

    Article  CAS  PubMed  Google Scholar 

  • Fayant P, Girlanda O, Chebli Y, Aubin CE, Villemure I, Geitmann A (2010) Finite element model of polar growth in pollen tubes. Plant Cell 22:2579–2593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferguson C, Teeri TT, Siika-aho M, Read SM, Bacic A (1998) Location of cellulose and callose in pollen tubes and grains of Nicotiana tabacum. Planta 206:452–460

    Article  CAS  Google Scholar 

  • Geitmann A (1999) The rheological properties of the pollen tube cell wall. In: Sexual plant reproduction and biotechnological applications. Springer, pp 283–302

    Google Scholar 

  • Geitmann A (2010) How to shape a cylinder: pollen tube as a model system for the generation of complex cellular geometry. Sex Plant Reprod 23:63–71

    Article  PubMed  Google Scholar 

  • Geitmann A, Dumais J (2009) Not-so-tip-growth. Plant Signal Behav 4:136–138

    Article  PubMed  PubMed Central  Google Scholar 

  • Geitmann A, Emons AM (2000) The cytoskeleton in plant and fungal cell tip growth. J Microsc 198:218–245

    Article  CAS  PubMed  Google Scholar 

  • Geitmann A, Nebenführ A (2015) Navigating the plant cell: intracellular transport logistics in the green kingdom. Mol Biol Cell 26:3373–3378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geitmann A, Ortega JK (2009) Mechanics and modeling of plant cell growth. Trends Plant Sci 14:467–478

    Article  CAS  PubMed  Google Scholar 

  • Geitmann A, Steer MW (2006) The architecture and properties of the pollen tube cell wall. The pollen tube: a cellular and molecular perspective. Plant Cell Monogr 3:177–200

    Article  CAS  Google Scholar 

  • Gendre D, McFarlane HE, Johnson E, Mouille G, Sjodin A, Oh J, Levesque-Tremblay G, Watanabe Y, Samuels L, Bhalerao RP (2013) Trans-Golgi network localized ECHIDNA/Ypt interacting protein complex is required for the secretion of cell wall polysaccharides in Arabidopsis. Plant Cell 25:2633–2646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gossot O, Geitmann A (2007) Pollen tube growth: coping with mechanical obstacles involves the cytoskeleton. Planta 226:405–416

    Article  CAS  PubMed  Google Scholar 

  • de Graaf BH, Cheung AY, Andreyeva T, Levasseur K, Kieliszewski M, Wu HM (2005) Rab11 GTPase-regulated membrane trafficking is crucial for tip-focused pollen tube growth in tobacco. Plant Cell 17:2564–2579

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gu Y, Fu Y, Dowd P, Li S, Vernoud V, Gilroy S, Yang Z (2005) A Rho family GTPase controls actin dynamics and tip growth via two counteracting downstream pathways in pollen tubes. J Cell Biol 169:127–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan Y, Guo J, Yang Z (2013) Signaling in pollen tube growth: crosstalk, feedback, and missing links. Mol Plant 6:1053–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerriero G, Hausman JF, Cai G (2014) No stress! Relax! Mechanisms governing growth and shape in plant cells. Int J Mol Sci 15:5094–5114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo F, McCubbin AG (2012) The pollen-specific R-SNARE/longin PiVAMP726 mediates fusion of endo- and exocytic compartments in pollen tube tip growth. J Exp Bot 63:3083–3095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hala M, Cole R, Synek L, Drdova E, Pecenkova T, Nordheim A, Lamkemeyer T, Madlung J, Hochholdinger F, Fowler JE, Žárský V (2008) An exocyst complex functions in plant cell growth in Arabidopsis and tobacco. Plant Cell 20:1330–1345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao H, Chen T, Fan L, Li R, Wang X (2013) 2, 6-Dichlorobenzonitrile causes multiple effects on pollen tube growth beyond altering cellulose synthesis in Pinus bungeana Zucc. PLoS One 8:e76660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill AE, Shachar-Hill B, Skepper JN, Powell J, Shachar-Hill Y (2012) An osmotic model of the growing pollen tube. PLoS One 7:e36585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holdaway-Clarke TL, Feijo JA, Hackett GR, Kunkel JG, Hepler PK (1997) Pollen tube growth and the intracellular cytosolic calcium gradient oscillate in phase while extracellular calcium influx is delayed. Plant Cell 9:1999–2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang JU, Gu Y, Lee YJ, Yang Z (2005) Oscillatory ROP GTPase activation leads the oscillatory polarized growth of pollen tubes. Mol Biol Cell 16:5385–5399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang JU, Vernoud V, Szumlanski A, Nielsen E, Yang Z (2008) A tip-localized RhoGAP controls cell polarity by globally inhibiting Rho GTPase at the cell apex. Curr Biol 18:1907–1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Idilli AI, Morandini P, Onelli E, Rodighiero S, Caccianiga M, Moscatelli A (2013) Microtubule depolymerization affects endocytosis and exocytosis in the tip and influences endosome movement in tobacco pollen tubes. Mol Plant 6:1109–1130

    Article  CAS  PubMed  Google Scholar 

  • Ischebeck T, Stenzel I, Hempel F, Jin X, Mosblech A, Heilmann I (2011) Phosphatidylinositol-4,5-bisphosphate influences Nt-Rac5-mediated cell expansion in pollen tubes of Nicotiana tabacum. Plant J 65:453–468

    Article  CAS  PubMed  Google Scholar 

  • Jamin A, Yang Z (2011) Interactions between calcium and ROP signaling regulate pollen tube tip growth. In: Sheng L (ed) Coding and decoding of calcium signals in plants. Springer, Berlin, pp 25–39

    Chapter  Google Scholar 

  • Kang BH, Nielsen E, Preuss ML, Mastronarde D, Staehelin LA (2011) Electron tomography of RabA4b- and PI-4Kbeta1-labeled trans Golgi network compartments in Arabidopsis. Traffic 12:313–329

    Article  CAS  PubMed  Google Scholar 

  • Kato N, He H, Steger AP (2010) A systems model of vesicle trafficking in Arabidopsis pollen tubes. Plant Physiol 152:590–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SJ, Brandizzi F (2014) The plant secretory pathway: an essential factory for building the plant cell wall. Plant Cell Physiol 55:687–693

    Article  CAS  PubMed  Google Scholar 

  • Kitakura S, Vanneste S, Robert S, Lofke C, Teichmann T, Tanaka H, Friml J (2011) Clathrin mediates endocytosis and polar distribution of PIN auxin transporters in Arabidopsis. Plant Cell 23:1920–1931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kroeger JH, Geitmann A (2013) Pollen tubes with more viscous cell walls oscillate at lower frequencies. MMNP 8:25–34

    Google Scholar 

  • Kroeger JH, Geitmann A, Grant M (2008) Model for calcium dependent oscillatory growth in pollen tubes. J Theor Biol 253:363–374

    Article  CAS  PubMed  Google Scholar 

  • Kroeger JH, Daher FB, Grant M, Geitmann A (2009) Microfilament orientation constrains vesicle flow and spatial distribution in growing pollen tubes. Biophys J 97:1822–1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kroeger JH, Zerzour R, Geitmann A (2011) Regulator or driving force? The role of turgor pressure in oscillatory plant cell growth. PLoS One 6:e18549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lazzaro MD (1996) The actin microfilament network within elongating pollen tubes of the gymnosperm Picea abies (Norway spruce). Protoplasma 194:186–194

    Article  CAS  Google Scholar 

  • Lazzaro MD, Donohue JM, Soodavar FM (2003) Disruption of cellulose synthesis by isoxaben causes tip swelling and disorganizes cortical microtubules in elongating conifer pollen tubes. Protoplasma 220:201–207

    Article  CAS  PubMed  Google Scholar 

  • Lee JY, Lu H (2011) Plasmodesmata: the battleground against intruders. Trends Plant Sci 16:201–210

    Article  CAS  PubMed  Google Scholar 

  • Lee YJ, Yang Z (2008) Tip growth: signaling in the apical dome. Curr Opin Plant Biol 11:662–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee YJ, Szumlanski A, Nielsen E, Yang Z (2008) Rho-GTPase-dependent filamentous actin dynamics coordinate vesicle targeting and exocytosis during tip growth. J Cell Biol 181:1155–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehner A, Dardelle F, Soret-Morvan O, Lerouge P, Driouich A, Mollet JC (2010) Pectins in the cell wall of Arabidopsis thaliana pollen tube and pistil. Plant Signal Behav 5:1282–1285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenartowska M, Michalska A (2008) Actin filament organization and polarity in pollen tubes revealed by myosin II subfragment 1 decoration. Planta 228:891–896

    Article  CAS  PubMed  Google Scholar 

  • Lennon KA, Lord EM (2000) In vivo pollen tube cell of Arabidopsis thaliana I. Tube cell cytoplasm and wall. Protoplasma 214:45–56

    Article  Google Scholar 

  • Lennon KA, Roy S, Hepler PK, Lord EM (1998) The structure of the transmitting tissue of Arabidopsis thaliana (L.) and the path of pollen tube growth. Sex Plant Reprod 11:49–59

    Article  Google Scholar 

  • Leroux C, Bouton S, Kiefer-Meyer MC, Fabrice TN, Mareck A, Guenin S, Fournet F, Ringli C, Pelloux J, Driouich A, Lerouge P, Lehner A, Mollet JC (2015) PECTIN METHYLESTERASE48 is involved in Arabidopsis pollen grain germination. Plant Physiol 167:367–380

    Article  CAS  PubMed  Google Scholar 

  • Li YQ, Faleri C, Geitmann A, Zhang HQ, Cresti M (1995) Immunogold localization of arabinogalactan proteins, unesterified and esterified pectins in pollen grains and pollen tubes of Nicotiana tabacum L. Protoplasma 189:26–36

    Article  CAS  Google Scholar 

  • Liu J, Hussey PJ (2014) Dissecting the regulation of pollen tube growth by modeling the interplay of hydrodynamics, cell wall and ion dynamics. Front Plant Sci 5:392

    PubMed  PubMed Central  Google Scholar 

  • Lord E (2000) Adhesion and cell movement during pollination: cherchez la femme. Trends Plant Sci 5:368–373

    Article  CAS  PubMed  Google Scholar 

  • Lord EM, Russell SD (2002) The mechanisms of pollination and fertilization in plants. Annu Rev Cell Dev Biol 18:81–105

    Article  CAS  PubMed  Google Scholar 

  • McKenna ST, Kunkel JG, Bosch M, Rounds CM, Vidali L, Winship LJ, Hepler PK (2009) Exocytosis precedes and predicts the increase in growth in oscillating pollen tubes. Plant Cell 21:3026–3040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Messerli MA, Creton R, Jaffe LF, Robinson KR (2000) Periodic increases in elongation rate precede increases in cytosolic Ca2+ during pollen tube growth. Dev Biol 222:84–98

    Article  CAS  PubMed  Google Scholar 

  • Micheli F (2001) Pectin methylesterases: cell wall enzymes with important roles in plant physiology. Trends Plant Sci 6:414–419

    Article  CAS  PubMed  Google Scholar 

  • Miyake T, Kuroiwa H, Kuroiwa T (1995) Differential mechanisms of movement between a generative cell and a vegetative nucleus in pollen tubes of Nicotiana tabacum as revealed by additions of colchicine and nonanoic acid. Sex Plant Reprod 8:228–230

    Article  Google Scholar 

  • Molendijk AJ, Bischoff F, Rajendrakumar CS, Friml J, Braun M, Gilroy S, Palme K (2001) Arabidopsis thaliana Rop GTPases are localized to tips of root hairs and control polar growth. EMBO J 20:2779–2788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mollet JC, Leroux C, Dardelle F, Lehner A (2013) Cell wall composition, biosynthesis and remodeling during pollen tube growth. Plants (Basel) 2:107–147

    Google Scholar 

  • Moscatelli A, Idilli AI (2009) Pollen tube growth: a delicate equilibrium between secretory and endocytic pathways. J Integr Plant Biol 51:727–739

    Article  CAS  PubMed  Google Scholar 

  • Moscatelli A, Idilli AI, Rodighiero S, Caccianiga M (2012) Inhibition of actin polymerisation by low concentration Latrunculin B affects endocytosis and alters exocytosis in shank and tip of tobacco pollen tubes. Plant Biol 14:770–782

    Article  CAS  PubMed  Google Scholar 

  • Nguema-Ona E, Coimbra S, Vicre-Gibouin M, Mollet JC, Driouich A (2012) Arabinogalactan proteins in root and pollen-tube cells: distribution and functional aspects. Ann Bot 110:383–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Onelli E, Moscatelli A (2013) Endocytic pathways and recycling in growing pollen tubes. Plants 2:211–229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Palin R, Geitmann A (2012) The role of pectin in plant morphogenesis. Biosystems 109:397–402

    Article  CAS  PubMed  Google Scholar 

  • Park SY, Jauh GY, Mollet JC, Eckard KJ, Nothnagel EA, Walling LL, Lord EM (2000) A lipid transfer-like protein is necessary for lily pollen tube adhesion to an in vitro stylar matrix. Plant Cell 12:151–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parre E, Geitmann A (2005) More than a leak sealant. The mechanical properties of callose in pollen tubes. Plant Physiol 137:274–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parton RM, Fischer-Parton S, Watahiki MK, Trewavas AJ (2001) Dynamics of the apical vesicle accumulation and the rate of growth are related in individual pollen tubes. J Cell Sci 114:2685–2695

    CAS  PubMed  Google Scholar 

  • Persson S, Paredez A, Carroll A, Palsdottir H, Doblin M, Poindexter P, Khitrov N, Auer M, Somerville CR (2007) Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in Arabidopsis. Proc Natl Acad Sci USA 104:15566–15571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierson ES, Miller DD, Callaham DA, van Aken J, Hackett G, Hepler PK (1996) Tip-localized calcium entry fluctuates during pollen tube growth. Dev Biol 174:160–173

    Article  CAS  PubMed  Google Scholar 

  • Qin Y, Yang Z (2011) Rapid tip growth: insights from pollen tubes. Semin Cell Dev Biol 22:816–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren H, Xiang Y (2007) The function of actin-binding proteins in pollen tube growth. Protoplasma 230:171–182

    Article  CAS  PubMed  Google Scholar 

  • Richter S, Muller LM, Stierhof YD, Mayer U, Takada N, Kost B, Vieten A, Geldner N, Koncz C, Jurgens G (2012) Polarized cell growth in Arabidopsis requires endosomal recycling mediated by GBF1-related ARF exchange factors. Nat Cell Biol 14:80–86

    Article  CAS  Google Scholar 

  • Röckel N, Wolf S, Kost B, Rausch T, Greiner S (2008) Elaborate spatial patterning of cell-wall PME and PMEI at the pollen tube tip involves PMEI endocytosis, and reflects the distribution of esterified and de-esterified pectins. Plant J 53:133–143

    Article  PubMed  CAS  Google Scholar 

  • Roy S, Eckard KJ, Lancelle S, Hepler PK, Lord EM (1997) High-pressure freezing improves the ultrastructural preservation of in vivo grown lily pollen tubes. Protoplasma 200:87–98

    Article  Google Scholar 

  • Sager R, Lee JY (2014) Plasmodesmata in integrated cell signalling: insights from development and environmental signals and stresses. J Exp Bot 65:6337–6358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito C, Ueda T (2009) Functions of RAB and SNARE proteins in plant life. Int Rev Cell Mol Biol 274:183–233

    Article  CAS  PubMed  Google Scholar 

  • Sanati Nezhad A, Geitmann A (2013) The cellular mechanics of an invasive lifestyle. J Exp Bot 64:4709–4728

    Article  CAS  PubMed  Google Scholar 

  • Sanati Nezhad A, Naghavi M, Packirisamy M, Bhat R, Geitmann A (2013a) Quantification of cellular penetrative forces using lab-on-a-chip technology and finite element modeling. Proc Natl Acad Sci USA 110:8093–8098

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanati Nezhad A, Naghavi M, Packirisamy M, Bhat R, Geitmann A (2013b) Quantification of the Young’s modulus of the primary plant cell wall using Bending-Lab-On-Chip (BLOC). Lab Chip 13:2599–2608

    Article  CAS  Google Scholar 

  • Sanati Nezhad A, Packirisamy M, Geitmann A (2014) Dynamic, high precision targeting of growth modulating agents is able to trigger pollen tube growth reorientation. Plant J 80:185–195

    Article  CAS  PubMed  Google Scholar 

  • Sanderfoot AA, Raikhel NV (1999) The specificity of vesicle trafficking: coat proteins and SNAREs. Plant Cell 11:629–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlüpmann H, Bacic A, Read SM (1994) Uridine diphosphate glucose metabolism and callose synthesis in cultured pollen tubes of Nicotiana alata Link et Otto. Plant Physiol 105:659–670

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva PA, Ul-Rehman R, Rato C, Di Sansebastiano GP, Malho R (2010) Asymmetric localization of Arabidopsis SYP124 syntaxin at the pollen tube apical and sub-apical zones is involved in tip growth. BMC Plant Biol 10:179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sprunck S, Rademacher S, Vogler F, Gheyselinck J, Grossniklaus U, Dresselhaus T (2012) Egg cell-secreted EC1 triggers sperm cell activation during double fertilization. Science 338:1093–1097

    Article  CAS  PubMed  Google Scholar 

  • Staiger CJ, Poulter NS, Henty JL, Franklin-Tong VE, Blanchoin L (2010) Regulation of actin dynamics by actin-binding proteins in pollen. J Exp Bot 61:1969–1986

    Article  CAS  PubMed  Google Scholar 

  • Steinhorst L, Kudla J (2013) Calcium - a central regulator of pollen germination and tube growth. Biochim Biophys Acta 1833:1573–1581

    Article  CAS  PubMed  Google Scholar 

  • Szumlanski AL, Nielsen E (2009) The Rab GTPase RabA4d regulates pollen tube tip growth in Arabidopsis thaliana. Plant Cell 21:526–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor LP, Hepler PK (1997) Pollen germination and tube growth. Annu Rev Plant Physiol Plant Mol Biol 48:461–491

    Article  CAS  PubMed  Google Scholar 

  • Toyooka K, Goto Y, Asatsuma S, Koizumi M, Mitsui T, Matsuoka K (2009) A mobile secretory vesicle cluster involved in mass transport from the Golgi to the plant cell exterior. Plant Cell 21:1212–1229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viotti C, Bubeck J, Stierhof YD, Krebs M, Langhans M, van den Berg W, van Dongen W, Richter S, Geldner N, Takano J, Jurgens G, de Vries SC, Robinson DG, Schumacher K (2010) Endocytic and secretory traffic in Arabidopsis merge in the trans-Golgi network/early endosome, an independent and highly dynamic organelle. Plant Cell 22:1344–1357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogler H, Draeger C, Weber A, Felekis D, Eichenberger C, Routier-Kierzkowska AL, Boisson-Dernier A, Ringli C, Nelson BJ, Smith RS, Grossniklaus U (2013) The pollen tube: a soft shell with a hard core. Plant J 73:617–627

    Article  CAS  PubMed  Google Scholar 

  • Voigt CA (2014) Callose-mediated resistance to pathogenic intruders in plant defense-related papillae. Front Plant Sci 5:168. doi:10.3389/fpls.2014.00168

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Kong L, Hao H, Wang X, Lin J, Samaj J, Baluska F (2005) Effects of brefeldin A on pollen germination and tube growth. Antagonistic effects on endocytosis and secretion. Plant Physiol 139:1692–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winship LJ, Obermeyer G, Geitmann A, Hepler PK (2010) Under pressure, cell walls set the pace. Trends Plant Sci 15:363–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winship LJ, Obermeyer G, Geitmann A, Hepler PK (2011) Pollen tubes and the physical world. Trends Plant Sci 16:353–355

    Article  CAS  PubMed  Google Scholar 

  • Yan A, Xu G, Yang ZB (2009) Calcium participates in feedback regulation of the oscillating ROP1 Rho GTPase in pollen tubes. Proc Natl Acad Sci USA 106:22002–22007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young RE, McFarlane HE, Hahn MG, Western TL, Haughn GW, Samuels AL (2008) Analysis of the Golgi apparatus in Arabidopsis seed coat cells during polarized secretion of pectin-rich mucilage. Plant Cell 20:1623–1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zerzour R, Kroeger J, Geitmann A (2009) Polar growth in pollen tubes is associated with spatially confined dynamic changes in cell mechanical properties. Dev Biol 334:437–446

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, He J, Lee D, McCormick S (2010a) Interdependence of endomembrane trafficking and actin dynamics during polarized growth of Arabidopsis pollen tubes. Plant Physiol 152:2200–2210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang GY, Feng J, Wu J, Wang XW (2010b) BoPMEI1, a pollen-specific pectin methylesterase inhibitor, has an essential role in pollen tube growth. Planta 231:1323–1334

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Zhang Y, Kang E, Xu Q, Wang M, Rui Y, Liu B, Yuan M, Fu Y (2013) MAP18 regulates the direction of pollen tube growth in Arabidopsis by modulating F-actin organization. Plant Cell 25:851–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zinkl GM, Zwiebel BI, Grier DG, Preuss D (1999) Pollen-stigma adhesion in Arabidopsis: a species-specific interaction mediated by lipophilic molecules in the pollen exine. Development 126:5431–5440

    CAS  PubMed  Google Scholar 

  • Zonia L (2010) Spatial and temporal integration of signalling networks regulating pollen tube growth. J Exp Bot 61:1939–1957

    Article  CAS  PubMed  Google Scholar 

  • Zonia L, Munnik T (2008) Vesicle trafficking dynamics and visualization of zones of exocytosis and endocytosis in tobacco pollen tubes. J Exp Bot 59:861–873

    Article  CAS  PubMed  Google Scholar 

  • Zonia L, Munnik T (2009) Uncovering hidden treasures in pollen tube growth mechanics. Trends Plant Sci 14:318–327

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja Geitmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rakusová, H., Geitmann, A. (2017). Pollen Tip Growth: Control of Cellular Morphogenesis Through Intracellular Trafficking. In: Obermeyer, G., Feijó, J. (eds) Pollen Tip Growth. Springer, Cham. https://doi.org/10.1007/978-3-319-56645-0_7

Download citation

Publish with us

Policies and ethics