Skip to main content

When Simple Meets Complex: Pollen and the -Omics

  • Chapter
  • First Online:
Pollen Tip Growth

Abstract

Pollen, an extremely reduced bi-cellular or tri-cellular male reproductive structure of flowering plants, serves as a model for numerous studies covering a wide range of developmental and physiological processes. The pollen development and subsequent progamic phase represent two fragile and vital phases of plant ontogenesis, and pollen was among the first singular plant tissues thoroughly characterised at the transcriptomic level. Here we present an overview of high-throughput tools applied in pollen research on numerous plant species. Transcriptomics, being the first experimental approach used, has provided and continues providing valuable information about global and specific gene expression and its dynamics. However, the proteome does not fully reflect the transcriptome, namely, because post-transcriptional regulatory levels, especially translation, mRNA storage and protein modifications, are active during male gametophyte development and during progamic phase. Transcriptomics therefore should be complemented by other -omic tools to get more realistic insight, most importantly proteomics and other specialised approaches mapping the involvement of regulatory RNAs and protein post-translational modifications as well as experiments designed to identify the subsets of total -omes like translatome, secretome or allergome.

Jan Fíla and Lenka Záveská Drábková contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    EAR motif is short Ethylene-responsive element binding factor-associated Amphiphilic Repression motif present in plant transcriptional repressors that mediates transcriptional repression by the association with corepressors responsible for chromatin modification (Kagale and Rozwadowski 2011).

  2. 2.

    TIR-NBS-LRR is a large receptor subfamily, a part of the ‘R’ gene superfamily implicated in pathogen recognition. TIR-NBS-LRR proteins contain N-terminal domain with toll/interleukin-1 receptor homology (TIR), nucleotide binding site (NBS) and leucine-rich repeat (LRR) domains (Meyers et al. 2003).

  3. 3.

    AGC kinases represent the subgroup of serine/threonine protein kinases named after three representative families, the cyclic guanosine monophosphate (cAMP)-dependent protein kinase (PKA), the cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG) and the protein kinase C (PKC) families (Pearce et al. 2010).

Abbreviations

2-D DIGE:

two dimensional fluorescence difference gel electrophoresis

2-DE:

two dimensional gel electrophoresis

bHLH:

basic helix-loop-helix transcription factor

bZIP TF:

basic leucine zipper transcription factor

cAMP:

cyclic adenosine monophosphate

CAGE:

cap analysis of gene expression

cGMP:

cyclic guanosine monophosphate

DEFL protein:

defensin-like family protein

EAR motif:

ethylene-responsive element binding factor-associated amphiphilic repression motif

EPP:

EDTA/puromycin-resistant particle

GO:

gene ontology

IMAC:

immobilized metal affinity chromatography

LC–MS/MS:

liquid chromatography–tandem mass spectrometry

MADS-box TF:

family of transcription factors containing conserved MADS DNA-binding domain

MALDI–TOF/TOF:

matrix-assisted laser desorption/ionization–time-of-flight tandem mass spectrometry

MIKC* type proteins:

subfamily of MADS-box proteins with conserved domain structure, where the MADS (M) domain is followed by Intervening (I), Keratin-like (K) and C-terminal domains

MOAC:

metal oxide/hydroxide affinity chromatography

MPSS:

massively parallel signature sequencing

mRNP:

messenger ribonucleoprotein particle

MYB family proteins:

transcription factor protein family characterised by the presence of MYB (myeloblastosis) DNA-binding domain

PKA:

cAMP-dependent protein kinase

PKC:

protein kinase C

PKG:

cGMP-dependent protein kinase

R2R3-MYB:

MYB-protein subfamily characterised by the R2R3-type MYB domain

RNAseq:

RNA deep sequencing technologies

RPM:

reads per million

SAGE:

serial analysis of gene expression

SIMAC:

sequential elution from IMAC

TCTP:

translationally controlled tumour protein

TF:

transcription factor

References

  • Abiko M, Furuta K, Yamauchi Y, Fujita C, Taoka M, Isobe T, Okamoto T (2013) Identification of proteins enriched in rice egg or sperm cells by single-cell proteomics. PLoS One 8:e69578. doi:10.1371/journal.pone.0069578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abou Chakra OR, Sutra JP, Demey Thomas E, Vinh J, Lacroix G, Poncet P, Senechal H (2012) Proteomic analysis of major and minor allergens from isolated pollen cytoplasmic granules. J Proteome Res 11:1208–1216

    Article  CAS  PubMed  Google Scholar 

  • Adamczyk BJ, Fernandez DE (2009) MIKC* MADS domain heterodimers are required for pollen maturation and tube growth in Arabidopsis. Plant Physiol 149:1713–1723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson SN, Johnson CS, Jones DS, Conrad LJ, Gou X, Russell SD, Sundaresan V (2013) Transcriptomes of isolated Oryza sativa gametes characterized by deep sequencing: evidence for distinct sex-dependent chromatin and epigenetic states before fertilization. Plant J 76:729–741

    Article  CAS  PubMed  Google Scholar 

  • Aya K, Suzuki G, Suwabe K, Hobo T, Takahashi H, Shiono K, Yano K, Tsutsumi N, Nakazono M, Nagamura Y, Matsuoka M, Watanabe M (2011) Comprehensive network analysis of anther-expressed genes in rice by the combination of 33 laser microdissection and 143 spatiotemporal microarrays. PLoS One 6:e26162. doi:10.1371/journal.pone.0026162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barranca M, Fontana S, Taverna S, Duro G, Zanella-Cleon I, Becchi M, De Leo G, Alessandro R (2010) Proteomic analysis of Parietaria judaica pollen and allergen profiling by an immunoproteomic approach. Biotechnol Lett 32:565–570

    Article  CAS  PubMed  Google Scholar 

  • Becker JD, Boavida LC, Carneiro J, Haury M, Feijo JA (2003) Transcriptional profiling of Arabidopsis tissues reveals the unique characteristics of the pollen transcriptome. Plant Physiol 133:713–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becker JD, Takeda S, Borges F, Dolan L, Feijó JA (2014) Transcriptional profiling of Arabidopsis root hairs and pollen defines an apical cell growth signature. BMC Plant Biol 14. doi:10.1186/s12870-014-0197-3

  • Berger F, Twell D (2011) Germline specification and function in plants. Annu Rev Plant Biol 62:461–484

    Article  CAS  PubMed  Google Scholar 

  • Boavida LC, Borges F, Becker JD, Feijo JA (2011) Whole genome analysis of gene expression reveals coordinated activation of signaling and metabolic pathways during pollen-pistil interactions in Arabidopsis. Plant Physiol 155:2066–2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bokvaj P, Hafidh S, Honys D (2015) Transcriptome profiling of male gametophyte development Nicotiana tabacum. Genomics Data 3:106–111

    Article  PubMed  Google Scholar 

  • Bonhomme L, Valot B, Tardieu F, Zivy M (2012) Phosphoproteome dynamics upon changes in plant water status reveal early events associated with rapid growth adjustment in maize leaves. Mol Cell Proteomics 11:957–972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bordas-Le Floch V, Le Mignon M, Bouley J, Groeme R, Jain K, Baron-Bodo V, Nony E, Mascarell L, Moingeon P (2015) Identification of novel short ragweed pollen allergens using combined transcriptomic and immunoproteomic approaches. PLoS One 10:e0136258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Borg M, Twell D (2010) Life after meiosis: patterning the angiosperm male gametophyte. Biochem Soc Trans 38:577–582

    Article  CAS  PubMed  Google Scholar 

  • Borg M, Brownfield L, Khatab H, Sidorova A, Lingaya M, Twell D (2011) The R2R3 MYB transcription factor DUO1 activates a male germline-specific regulon essential for sperm cell differentiation in Arabidopsis. Plant Cell 23:534–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borg M, Rutley N, Kagale S, Hamamura Y, Gherghinoiu M, Kumar S, Sari U, Esparza-Franco MA, Sakamoto W, Rozwadowski K, Higashiyama T, Twell D (2014) An EAR-dependent regulatory module promotes male germ cell division and sperm fertility in Arabidopsis. Plant Cell 26:2098–2113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borges F, Gomes G, Gardner R, Moreno N, McCormick S, Feijo JA, Becker JD (2008) Comparative transcriptomics of Arabidopsis sperm cells. Plant Physiol 148:1168–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borges F, Pereira PA, Slotkin RK, Martienssen RA, Becker JD (2011) MicroRNA activity in the Arabidopsis male germline. J Exp Bot 62:1611–1620

    Article  CAS  PubMed  Google Scholar 

  • Brewbaker JL (1967) Distribution and phylogenetic significance of binucleate and trinucleate pollen grains in angiosperms. Am J Bot 54:1069–1083

    Article  Google Scholar 

  • Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science 320:1185–1190

    Article  CAS  PubMed  Google Scholar 

  • Bryce M, Drews O, Schenk MF, Menzel A, Estrella N, Weichenmeier I, Smulders MJ, Buters J, Ring J, Gorg A, Behrendt H, Traidl-Hoffmann C (2010) Impact of urbanization on the proteome of birch pollen and its chemotactic activity on human granulocytes. Int Arch Allergy Immunol 151:46–55

    Article  CAS  PubMed  Google Scholar 

  • Calarco JP, Borges F, Donoghue MTA, Van Ex F, Jullien PE, Lopes T, Gardner R, Berger F, Feijó J, Becker JD, Martienssen RA (2012) Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell 151:194–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell BC, Gilding EK, Timbrell V, Guru P, Loo D, Zennaro D, Mari A, Solley G, Hill MM, Godwin ID, Davies JM (2015) Total transcriptome, proteome, and allergome of Johnson grass pollen, which is important for allergic rhinitis in subtropical regions. J Allergy Clin Immunol 135:133–142

    Article  CAS  PubMed  Google Scholar 

  • Carmona R, Zafra A, Seoane P, Castro AJ, Guerrero-Fernández D, Castillo-Castillo T, Medina-García A, Cánovas FM, Aldana-Montes JF, Navas-Delgado I, Alché JD, Claros MG (2015) ReprOlive: a database with linked data for the olive tree (Olea europaea L.) reproductive transcriptome. Front Plant Sci 6. doi:10.3389/fpls.2015.00625

  • Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caruso M, Merelo P, Distefano G, La Malfa S, Lo Piero AR, Tadeo FR, Talon M, Gentile A (2012) Comparative transcriptome analysis of stylar canal cells identifies novel candidate genes implicated in the self-incompatibility response of Citrus clementina. BMC Plant Biol 12:20. doi:10.1186/1471-2229-12-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chalivendra SC, Lopez-Casado G, Kumar A, Kassenbrock AR, Royer S, Tovar-Mendez A, Covey PA, Dempsey LA, Randle AM, Stack SM, Rose JK, McClure B, Bedinger PA (2013) Developmental onset of reproductive barriers and associated proteme changes in stigma/styles of Solanum pennellii. J Exp Bot 64:265–279

    Article  CAS  PubMed  Google Scholar 

  • Chambers C, Shuai B (2009) Profiling microRNA expression in Arabidopsis pollen using microRNA array and real-time PCR. BMC Plant Biol 9. doi:10.1186/1471-2229-9-87

  • Chao Q, Gao ZF, Wang YF, Li Z, Huang XH, Wang YC, Mei YC, Zhao BG, Li L, Jiang YB, Wang BC (2016) The proteome and phosphoproteome of maize pollen uncovers fertility candidate proteins. Plant Mol Biol 91:287–304

    Article  CAS  PubMed  Google Scholar 

  • Chaturvedi P, Ischebeck T, Egelhofer V, Lichtscheidl I, Weckwerth W (2013) Cell-specific analysis of the tomato pollen proteome from pollen mother cell to mature pollen provides evidence for developmental priming. J Proteome Res 12:4892–4903

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Wu X, Chen Y, Li X, Huang M, Zheng M, Baluška F, Šamaj J, Lin J (2009) Combined proteomic and cytological analysis of Ca2+-calmodulin regulation in Picea meyeri pollen tube growth. Plant Physiol 149:1111–1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Farmer AD, Langley RJ, Mudge J, Crow JA, May GD, Huntley J, Smith AG, Retzel EF (2010) Meiosis-specific gene discovery in plants: RNAseq applied to isolated Arabidopsis male meiocytes. BMC Plant Biol 10:280. doi:10.1186/1471-2229-10-280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Liu P, Hoehenwarter W, Lin J (2012) Proteomic and phosphoproteomic analysis of Picea wilsonii pollen development under nutrient limitation. J Proteome Res 11:4180–4190

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Zou M, Cao Y (2014) Transcriptome analysis of the Arabidopsis semi-in vivo pollen tube guidance system uncovers a distinct gene expression profile. J Plant Biol 57(2):93–105

    Article  CAS  Google Scholar 

  • Chettoor AM, Givan SA, Cole RA, Coker CT, Unger-Wallace E, Vejlupkova Z, Vollbrecht E, Fowler JE, Evans MS (2014) Discovery of novel transcripts and gametophytic functions via RNAseq analysis of maize gametophytic transcriptomes. BMC Plant Biol 15:414

    Google Scholar 

  • Collins LJ (2011) Spliceosomal RNA infrastructure: the network of splicing components and their regulation by miRNAs. Adv Exp Med Biol 722:86–102

    Article  CAS  PubMed  Google Scholar 

  • Costa M, Nobre MS, Becker JD, Masiero S, Amorim MI, Pereira LG, Coimbra S (2013) Expression-based and co-localization detection of arabinogalactan protein 6 and arabinogalactan protein 11 interactors in Arabidopsis pollen and pollen tubes. BMC Plant Biol 13. doi:10.1186/1471-2229-13-7

  • Dai S, Li L, Chen T, Chong K, Xue Y, Wang T (2006) Proteomic analyses of Oryza sativa mature pollen reveal novel proteins associated with pollen germination and tube growth. Proteomics 6:2504–2529

    Article  CAS  PubMed  Google Scholar 

  • Dai S, Chen T, Chong K, Xue Y, Liu S, Wang T (2007) Proteomics identification of differentially expressed proteins associated with pollen germination and tube growth reveals characteristics of germinated Oryza sativa pollen. Mol Cell Proteomics 6:207–230

    Article  CAS  PubMed  Google Scholar 

  • Davidson RM, Hansey CN, Gowda M, Childs KL, Lin H, Vaillancourt B, Sekhon RS, de Leon N, Kaeppler SM, Jiang N, Buell CR (2011) Utility of RNA sequencing for analysis of maize reproductive transcriptomes. Plant Genome J 4:191

    Article  CAS  Google Scholar 

  • de Groot MJ, Daran-Lapujade P, van Breukelen B, Knijnenburg TA, de Hulster EA, Reinders MJ, Pronk JT, Heck AJ, Slijper M (2007) Quantitative proteomics and transcriptomics of anaerobic and aerobic yeast cultures reveals post-transcriptional regulation of key cellular processes. Microbiology 153:3864–3878

    Article  PubMed  CAS  Google Scholar 

  • Der JP, Barker MS, Wickett NJ, de Pamphilis CW, Wolf PG (2011) De novo characterization of the gametophyte transcriptome in bracken fern, Pteridium aquilinum. BMC Genomics 12. doi:10.1186/1471-2164-12-99

  • Du H, Feng B-R, Yang S-S, Huang Y-B, Tang Y-X (2012) The R2R3-MYB transcription factor gene family in maize. PLoS One 7:e37463. doi:10.1371/journal.pone.0037463

    Article  PubMed  PubMed Central  Google Scholar 

  • Du H, Liang Z, Zhao S, Nan MG, Tran LS, Lu K, Huang YB, Li JN (2015) The evolutionary history of R2R3-MYB proteins across 50 eukaryotes: new insights into subfamily classification and expansion. Sci Rep 5:11037. doi:10.1038/srep11037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dukowic-Schulze S, Sundararajan A, Mudge J, Ramaraj T, Farmer AD, Wang M, Sun Q, Pillardy J, Kianian SF, Retzel EF, Pawloski WP, Chen C (2014) The transcriptome landscape of early maize meiosis. BMC Plant Biol 14:18. doi:10.1186/1471-2229-14-118

    Article  Google Scholar 

  • Durbarry A, Vizir I, Twell D (2005) Male germ line development in Arabidopsis. duo pollen mutants reveal gametophytic regulators of generative cell cycle progression. Plant Physiol 137(1):297–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Kelish A, Zhao F, Heller W, Dumer J, Winkler JB, Behdendt H, Traidl-Hoffmann C, Horres R, Pfeiffer M, Ernst D (2014) Ragweed (Ambrosia artemisiifolia) pollen allergenicity: SuperSAGE transcriptomic analysis upon elevated CO2 and drought stress. BMC Plant Biol 14:176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elfving F (1879) Studien über die Pollenkörner der Angiospermen. Jenaische Zeitschrift für Naturwissenschaft 13:1–28

    Google Scholar 

  • Engel ML, Chaboud A, Dumas C, McCormick S (2003) Sperm cells of Zea mays have a complex complement of mRNAs. Plant J 34:697–707

    Article  CAS  PubMed  Google Scholar 

  • Fasoli M, Dal Santo S, Zenoni S, Tornielli GB, Farina L, Zamboni A, Porceddu A, Venturini L, Bicego M, Murino V, Ferrarini A, Delledonne M, Pezzotti M (2012) The grapevine expression atlas reveals a deep transcriptome shift driving the entire plant into a maturation program. Plant Cell 24:3489–3505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng J, Chen X, Yuan Z, He T, Zhang L, Wu Y, Liu W, Liang Q (2006) Proteome comparison following self- and across-pollination in self-incompatible apricot (Prunus armeniaca L.) Protein J 25:328–335

    Article  CAS  PubMed  Google Scholar 

  • Fernando DD (2005) Characterization of pollen cube development in Pinus strobus (Eastern white pine) through proteomic analysis of differentially expressed proteins. Proteomics 5:4917–4926

    Article  CAS  PubMed  Google Scholar 

  • Fíla J, Honys D (2012) Enrichment techniques employed in phosphoproteomics. Amino Acids 43:1025–1047

    Article  PubMed  CAS  Google Scholar 

  • Fíla J, Čapková V, Feciková J, Honys D (2011) Impact of homogenization and protein extraction conditions on the obtained tobacco pollen proteomic patterns. Biol Plant 55:499–506

    Article  CAS  Google Scholar 

  • Fíla J, Matros A, Radau S, Zahedi RP, Čapková V, Mock H-P, Honys D (2012) Revealing phosphoproteins playing role in tobacco pollen activated in vitro. Proteomics 12:3229–3250

    Article  PubMed  CAS  Google Scholar 

  • Fíla J, Radau S, Matros A, Hartmann A, Scholz U, Feciková J, Mock HP, Čapková V, Zahedi RP, Honys D (2016) Phosphoproteomics profiling of tobacco mature pollen and pollen activated in vitro. Mol Cell Proteomics 15:1338–1350

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Frank G, Pressman E, Ophir R, Althan L, Shaked R, Freedman M, Shen S, Firon N (2009) Transcriptional profiling of maturing tomato (Solanum lycopersicum L.) microspores reveals the involvement of heat shock proteins, ROS scavengers, hormones, and sugars in the heat stress response. J Exp Bot 60:3891–3908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Futamura N, Ujino-Ihara T, Nishiguchi M, Kanamori H, Yoshimura K, Sakaguchi M, Shinohara K (2006) Analysis of expressed sequence tags from Cryptomeria japonica pollen reveals novel pollen-specific transcripts. Tree Physiol 26:1517–1528

    Article  CAS  PubMed  Google Scholar 

  • Ge W, Song Y, Zhang C, Zhang Y, Burlingame AL, Guo Y (2011) Proteomic analyses of apoplastic proteins from germinating Arabidopsis thaliana pollen. Biochim Biophys Acta 1814:1964–1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh N, Sircar G, Saha B, Pandey N, Gupta Bhattacharya S (2015) Search for allergens from the pollen proteome of sunflower (Helianthus annuus L.): a major sensitizer for respiratory allergy patients. PLoS One 10:e0138992. doi:10.1371/journal.pone.0138992

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gibalová A, Reňák D, Matczuk K, Dupl’áková N, Cháb D, Twell D, Honys D (2009) AtbZIP34 is required for Arabidopsis pollen wall patterning and the control of several metabolic pathways in developing pollen. Plant Mol Biol 70:581–601

    Article  PubMed  CAS  Google Scholar 

  • Gou X, Yuan T, Wei X, Russell SD (2009) Gene expression in the dimorphic sperm cells of Plumbago zeylanica: transcript profiling, diversity, and relationship to cell type. Plant J 60:33–47

    Article  CAS  PubMed  Google Scholar 

  • Grant-Downton R, Hafidh S, Twell D, Dickinson HG (2009a) Small RNA pathways are present and functional in the angiosperm male gametophyte. Mol Plant 2:500–512

    Article  CAS  PubMed  Google Scholar 

  • Grant-Downton R, Le Trionnaire G, Schmid R, Rodriguez-Enriquez J, Hafidh S, Mehdi S, Twell D, Dickinson H (2009b) MicroRNA and tasiRNA diversity in mature pollen of Arabidopsis thaliana. BMC Genomics 10. doi:10.1186/1471-2164-10-643

  • Grobei MA, Qeli E, Brunner E, Rehrauer H, Zhang R, Roschitzki B, Basler K, Ahrens CH, Grossniklaus U (2009) Deterministic protein inference for shotgun proteomics data provides new insights into Arabidopsis pollen development and function. Genome Res 19:1786–1800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haerizadeh F, Wong CE, Bhalla PL, Gresshoff PM, Singh MB (2009) Genomic expression profiling of mature soybean (Glycine max) pollen. BMC Plant Biol 9. doi:10.1186/1471-2229-9-25

  • Hafidh S, Čapková V, Honys D (2011) Safe keeping the message: mRNP complexes tweaking after transcription. Adv Exp Med Biol 722:118–136

    Article  CAS  PubMed  Google Scholar 

  • Hafidh S, Breznenová K, Honys D (2012a) De novo post-pollen mitosis II tobacco pollen tube transcriptome. Plant Signal Behav 7:918–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hafidh S, Breznenová K, Růžička P, Feciková J, Čapková V, Honys D (2012b) Comprehensive analysis of tobacco pollen transcriptome unveils common pathways in polar cell expansion and underlying heterochronic shift during spermatogenesis. BMC Plant Biol 12:24. doi:10.1186/1471-2229-12-24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hafidh S, Potěšil D, Fíla J, Feciková J, Čapková V, Zdráhal Z, Honys D (2014) In search of ligands and receptors of the pollen tube: the missing link in pollen tube perception. Biochem Soc Trans 42:388–394

    Article  CAS  PubMed  Google Scholar 

  • Hafidh S, Fíla J, Honys D (2016a) Male gametophyte development and function in angiosperms: a general concept. Plant Reprod 29:31–51

    Article  PubMed  Google Scholar 

  • Hafidh S, Potěšil D, Fíla J, Čapková V, Zdráhal Z, Honys D (2016b) Quantitative proteomics of the tobacco pollen tube secretome identifies novel pollen tube guidance proteins important for fertilization. Genome Biol 17:81. doi:10.1186/s13059-016-0928-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Han B, Chen S, Dai S, Yang N, Wang T (2010) Isobaric tags for relative and absolute quantification-based comparative proteomics reveals the features of plasma membrane-associated proteomes of pollen grains and pollen tubes from Lilium davidii. J Integrative Plant Biol 52:1043–1058

    Article  CAS  Google Scholar 

  • Higashiyama T (2015) The mechanism and key molecules involved in pollen tube guidance. Annu Rev Plant Biol 66:393–413

    Article  CAS  PubMed  Google Scholar 

  • Higo A, Niwa M, Yamato KT, Yamada L, Sawada H, Sakamoto T, Kurata T, Shirakawa M, Endo M, Shigenobu S, Yamaguchi K, Ishizaki K, Nishihama R, Kohchi T, Araki T (2016) Transcriptional framework of male gametogenesis in the liverwort Marchantia polymorpha L. Plant Cell Physiol 57:325–338

    Article  CAS  PubMed  Google Scholar 

  • Hirano K, Aya K, Hobo T, Sakakibara H, Kojima M, Shim RA, Hasegawa Y, Ueguchi-Tanaka M, Matsuoka M (2008) Comprehensive transcriptome analysis of phytohormone biosynthesis and signaling genes in microspore/pollen and tapetum of rice. Plant Cell Physiol 49:1429–1450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hobo T, Suwabe K, Aya K, Suzuki G, Yano K, Ishimizu T, Fujita M, Kikuchi S, Hamada K, Miyano M, Fujioka T, Kaneko F, Kazama T, Mizuta Y, Takahashi H, Shiono K, Nakazono M, Tsutsumi N, Nagamura Y, Kurata N, Watanabe M, Matsuoka M (2008) Various spatiotemporal expression profiles of anther-expressed genes in rice. Plant Cell Physiol 49:1417–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollender CA, Kang C, Darwish O, Geretz A, Matthews BF, Slovin J, Alkharouf N, Liu Z (2014) Floral transcriptomes in woodland strawberry uncover developing receptacle and anther gene networks. Plant Physiol 165:1062–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holmes-Davis R, Tanaka CK, Vensel WH, Hurkman WJ, McCormick S (2005) Proteome mapping of mature pollen of Arabidopsis thaliana. Proteomics 5:4864–4884

    Article  CAS  PubMed  Google Scholar 

  • Honys D, Twell D (2003) Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiol 132:640–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honys D, Twell D (2004) Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol 5. doi:10.1186/gb-2004-5-11-r85

  • Honys D, Combe JP, Twell D, Čapková V (2000) The translationally repressed pollen-specific ntp303 mRNA is stored in non-polysomal mRNPs during pollen maturation. Sex Plant Reprod 13:135–144

    Article  CAS  Google Scholar 

  • Honys D, Reňák D, Feciková J, Jedelský PL, Nebesářova J, Dobrev P, Čapková V (2009) Cytoskeleton-associated large RNP complexes in tobacco male gametophyte (EPPs) are associated with ribosomes and are involved in protein synthesis, processing, and localization. J Proteome Res 8:2015–2031

    Article  CAS  PubMed  Google Scholar 

  • Huang J-C, Chang L-C, Wang M-L, Guo C-L, Chung M-C, Jauh G-Y (2011) Identification and exploration of pollen tube small proteins encoded by pollination-induced transcripts. Plant Cell Physiol 52:1546–1559

    Article  CAS  PubMed  Google Scholar 

  • Iaria D, Chiappetta A, Muzzalupo I (2016) De novo transcriptome sequencing of Olea europaea L. to identify genes involved in the development of the pollen tube. Sci World J 2016:4305252. doi:10.1155/2016/4305252

    Article  Google Scholar 

  • Ibarra CA, Feng X, Schoft VK, Hsieh TF, Uzawa R, Rodrigues JA, Zemach A, Chumak N, Machlicova A, Nishimura T, Rojas D, Fischer RL, Tamaru H, Zilberman D (2012) Active DNA demethylation in plant companion cells reinforces transposon methylation in gametes. Science 337:1360–1364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikram S, Durandet M, Vesa S, Pereira S, Guerche P, Bonhomme S (2014) Functional redundancy and/or ongoing pseudogenization among F-box protein genes expressed in Arabidopsis male gametophyte. Plant Reprod 27:95–107

    Article  CAS  PubMed  Google Scholar 

  • Ischebeck T, Valledor L, Lyon D, Gingl S, Nagler M, Meijon M, Egelhofer V, Weckwerth W (2014) Comprehensive cell-specific protein analysis in early and late pollen development from diploid microsporocytes to pollen tube growth. Mol Cell Proteomics 13:295–310

    Article  CAS  PubMed  Google Scholar 

  • Kagale S, Rozwadowski K (2011) EAR motif-mediated transcriptional repression in plants. Epigenetics 6:141–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanter U, Heller W, Durner J, Winkler JB, Engel M, Behrendt H, Holzinger A, Braun P, Hauser M, Ferreira F, Mayer K, Pfeifer M, Ernst D (2013) Molecular and immunological characterization of ragweed (Ambrosia artemisiifolia L.) pollen after exposure of the plants to elevated ozone over a whole growing season. PLoS One 8. doi:10.1371/journal.pone.0061518

  • Kao SH, Su SN, Huang SW, Tsai JJ, Chow LP (2005) Sub-proteome analysis of novel IgE-binding proteins from Bermuda grass pollen. Proteomics 5:3805–3813

    Article  CAS  PubMed  Google Scholar 

  • Kazan K (2003) Alternative splicing and proteome diversity in plants: the tip of the iceberg has just emerged. Trends Plant Sci 8:468–471

    Article  CAS  PubMed  Google Scholar 

  • Keene JD (2007) RNA regulons: coordination of post-transcriptional events. Nat Rev Genet 8:533–543

    Article  CAS  PubMed  Google Scholar 

  • Kessler SA, Grossniklaus U (2011) She’s the boss: signaling in pollen tube reception. Curr Opin Plant Biol 14:622–627

    Article  CAS  PubMed  Google Scholar 

  • Lang V, Usadel B, Obermeyer G (2015) De novo sequencing and analysis of the lily pollen transcriptome: an open access data source for an orphan plant species. Plant Mol Biol 87:69–80

    Article  CAS  PubMed  Google Scholar 

  • Lee JY, Lee DH (2003) Use of serial analysis of gene expression technology to reveal changes in gene expression in Arabidopsis pollen undergoing cold stress. Plant Physiol 132:517–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee TY, Bretana NA, Lu CT (2011) PlantPhos: using maximal dependence decomposition to identify plant phosphorylation sites with substrate site specificity. BMC Bioinformatics 12:13. doi:10.1186/1471-2105-12-261

    Article  Google Scholar 

  • Leydon AR, Beale KM, Woroniecka K, Castner E, Chen J, Horgan C, Palanivelu R, Johnson MA (2013) Three MYB transcription factors control pollen tube differentiation required for sperm release. Curr Biol 23:1209–1214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Chen J, Zhang Z, Pan Y (2008) Proteome analysis of tea pollen (Camellia sinensis) under different storage conditions. Agric Food Chem 56:7535–7544

    Article  CAS  Google Scholar 

  • Li M, Sha A, Zhou X, Yang P (2012) Comparative proteomic analyses reveal the changes of metabolic features in soybean (Glycine max) pistils upon pollination. Sex Plant Reprod 25:281–291

    Article  CAS  PubMed  Google Scholar 

  • Li XM, Sang YL, Zhao XY, Zhang XS (2013) High-throughput sequencing of small RNAs from pollen and silk and characterization of miRNAs as candidate factors involved in pollen-silk interactions in maize. PLoS One 8:e72852. doi:10.1371/journal.pone.0072852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Wang K, Wang X, Yang P (2014) Morphological and proteomic analysis reveal the role of pistil under pollination in Liriodendron chinense (Hemsl.) Sarg. PLoS One 9:e99970. doi:10.1371/journal.pone.0099970

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li M, Wang K, Li S, Yang P (2016) Exploration of rice pistil responses during early post-pollination through a combined proteomic and transcriptomic analysis. J Proteomics 131:214–226

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Tan Z-M, Zhu L, Niu Q-K, Zhou J-J, Li M, Chen L-Q, Zhang X-Q, Ye D (2013) MYB97, MYB101 and MYB120 function as male factors that control pollen tube-synergid interaction in Arabidopsis thaliana fertilization. PLoS Genet 9. doi:10.1371/journal.pgen.1003933

  • Lin S-Y, Chen P-W, Chuang M-H, Juntawong P, Bailey-Serres J, Jauh G-Y (2014) Profiling of translatomes of in vivo-grown pollen tubes reveals genes with roles in micropylar guidance during pollination in Arabidopsis. Plant Cell 26:602–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Cui S, Wu F, Yan S, Lin X, Du X, Chong K, Schilling S, Theissen G, Meng Z (2013) Functional conservation of MIKC*-type MADS box genes in Arabidopsis and rice pollen maturation. Plant Cell 25:1288–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Joly V, Dorion S, Rivoal J, Matton DP (2015) The plant ovule secretome: a different view toward pollen-pistil interactions. J Proteome Res 14:4763–4775

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Casado G, Covey PA, Bedinger PA, Mueller LA, Thannhauser TW, Zhang S, Fei Z, Giovannoni JJ, Rose JK (2012) Enabling proteomic studies with RNA-Seq: the proteome of tomato pollen as a test case. Proteomics 12:761–774

    Article  CAS  PubMed  Google Scholar 

  • Lora J, Herrero M, Hormaza JI (2009) The coexistence of bicellular and tricellular pollen in Annona cherimola (Annonaceae): implications for pollen evolution. Am J Bot 96:802–808

    Article  PubMed  Google Scholar 

  • Loraine AE, McCormick S, Estrada A, Patel K, Qin P (2013) RNA-Seq of Arabidopsis pollen uncovers novel transcription and alternative splicing. Plant Physiol 162(2):1092–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loraine AE, Blakley IC, Jagadeesan S, Harper J, Miller G, Firon N (2015) Analysis and visualization of RNAseq expression data using RStudio, Bioconductor, and Integrated Genome Browser. Methods Mol Biol 1284:481–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorkovic ZJ, Barta A (2004) Compartmentalization of the splicing machinery in plant cell nuclei. Trends Plant Sci 9:565–568

    Article  CAS  PubMed  Google Scholar 

  • Luo M, Taylor JM, Spriggs A, Zhang H, Wu X, Russell S, Singh M, Koltunow A (2011) A genome-wide survey of imprinted genes in rice seeds reveals imprinting primarily occurs in the endosperm. PLoS Genet 7:e1002125. doi:10.1371/journal.pgen.1002125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma J, Skibbe DS, Fernandes J, Walbot V (2008) Male reproductive development: gene expression profiling of maize anther and pollen ontogeny. Genome Biol 9. doi:10.1186/gb-2008-9-12-r181

  • Mani BM, Huerta-Ocampo JA, Garcia-Sanchez JR, Barrera-Pacheco A, de la Rosa AP, Teran LM (2015) Identification of Ligustrum lucidum pollen allergens using a proteomics approach. Biochem Biophys Res Commun 468:788–792

    Article  CAS  PubMed  Google Scholar 

  • Matsuda T, Matsushima M, Nabemoto M, Osaka M, Sakazono S, Masuko-Suzuki H, Takahashi H, Nakazono M, Iwano M, Takayama S, Shimizu KK, Okumura K, Suzuki G, Watanabe M, Suwabe K (2014) Transcriptional characteristics and differences in Arabidopsis stigmatic papilla cells pre- and post-pollination. Plant Cell Physiol 56:663–673

    Article  PubMed  CAS  Google Scholar 

  • Matus JT, Aquea F, Arce-Johnson P (2008) Analysis of the grape MYB R2R3 subfamily reveals expanded wine quality-related clades and conserved gene structure organization across Vitis and Arabidopsis genomes. BMC Plant Biol 8:83. doi:10.1186/1471-2229-8-83

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mayank P, Grossman J, Wuest S, Boisson-Dernier A, Roschitzki B, Nanni P, Nuehse T, Grossniklaus U (2012) Characterization of the phosphoproteome of mature Arabidopsis pollen. Plant J 72:89–101

    Article  CAS  PubMed  Google Scholar 

  • McCormick S (1993) Male gametophyte development. Plant Cell 5:1265–1275

    Article  PubMed  PubMed Central  Google Scholar 

  • Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW (2003) Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15:809–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyazaki S, Murata T, Sakurai-Ozato N, Kubo M, Demura T, Fukuda H, Hasebe M (2009) ANXUR1 and 2, sister genes to FERONIA/SIRENE, are male factors for coordinated fertilization. Curr Biol 19:1327–1331

    Article  CAS  PubMed  Google Scholar 

  • Nazemof N, Couroux P, Rampitsch C, Xing T, Robert LS (2014) Proteomic profiling reveals insights into Triticeae stigma development and function. J Exp Bot 65:6069–6080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noir S, Brautigam A, Colby T, Schmidt J, Panstruga R (2005) A reference map of the Arabidopsis thaliana mature pollen proteome. Biochem Biophys Res Commun 337:1257–1266

    Article  CAS  PubMed  Google Scholar 

  • O’Donoghue MT, Chater C, Wallace S, Gray JE, Beerling DJ, Fleming AJ (2013) Genome-wide transcriptomic analysis of the sporophyte of the moss Physcomitrella patens. J Exp Bot 64:3567–3581

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Obermeyer G, Fragner L, Lang V, Weckwerth W (2013) Dynamic adaption of metabolic pathways during germination and growth of lily pollen tubes after inhibition of the electron transport chain. Plant Physiol 162:1822–1833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh SA, Johnson A, Smertenko A, Rahman D, Park SK, Hussey PJ, Twell D (2005) A divergent cellular role for the FUSED kinase family in the plant-specific cytokinetic phragmoplast. Curr Biol 15:2107–2111

    Article  CAS  PubMed  Google Scholar 

  • Ohr H, Bui AQ, Le BH, Fischer RL, Choi Y (2007) Identification of putative Arabidopsis DEMETER target genes by GeneChip analysis. Biochem Biophys Res Commun 364:856–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okada T, Bhalla PL, Singh MB (2006) Expressed sequence tag analysis of Lilium longiflorum generative cells. Plant Cell Physiol 47:698–705

    Article  CAS  PubMed  Google Scholar 

  • Okada T, Singh MB, Bhalla PL (2007) Transcriptome profiling of Lilium longiflorum generative cells by cDNA microarray. Plant Cell Rep 26:1045–1052

    Article  CAS  PubMed  Google Scholar 

  • Oliver MJ, Dowd SE, Zaragoza J, Mauget SA, Payton PR (2004) The rehydration transcriptome of the desiccation-tolerant bryophyte Tortula ruralis: transcript classification and analysis. BMC Genomics 5:89. doi:10.1186/1471-2164-5-89

    Article  PubMed  PubMed Central  Google Scholar 

  • Ortiz-Ramirez C, Hernandez-Coronado M, Thamm A, Catarino B, Wang M, Dolan L, Feijo JA, Becker JD (2016) A transcriptome atlas of Physcomitrella patens provides insights into the evolution and development of land plants. Mol Plant 9:205–220

    Article  CAS  PubMed  Google Scholar 

  • Osaka M, Matsuda T, Sakazono S, Masuko-Suzuki H, Maeda S, Sewaki M, Sone M, Takahashi H, Nakazono M, Iwano M, Takayama S, Shimizu KK, Yano K, Lim YP, Suzuki G, Suwabe K, Watanabe M (2013) Cell type-specific transcriptome of Brassicaceae stigmatic papilla cells from a combination of laser microdissection and RNA sequencing. Plant Cell Physiol 54:1894–1906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palanivelu R, Preuss D (2000) Pollen tube targeting and axon guidance: parallels in tip growth mechanisms. Trends Cell Biol 10:517–524

    Article  CAS  PubMed  Google Scholar 

  • Palanivelu R, Preuss D (2006) Distinct short-range ovule signals attract or repel Arabidopsis thaliana pollen tubes in vitro. BMC Plant Biol 6:7. doi:10.1186/1471-2229-6-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Palanivelu R, Tsukamoto T (2012) Pathfinding in angiosperm reproduction: pollen tube guidance by pistils ensures successful double fertilization. Wiley Interdiscip Rev Dev Biol 1:96–113

    Article  CAS  PubMed  Google Scholar 

  • Palatnik JF, Wollmann H, Schommer C, Schwab R, Boisbouvier J, Rodriguez R, Warthmann N, Allen E, Dezulian T, Huson D, Carrington JC, Weigel D (2007) Sequence and expression differences underlie functional specialization of Arabidopsis microRNAs miR159 and miR319. Dev Cell 13:115–125

    Article  CAS  PubMed  Google Scholar 

  • Park SK, Howden R, Twell D (1998) The Arabidopsis thaliana gametophytic mutation gemini pollen1 disrupts microspore polarity, division asymmetry and pollen cell fate. Development 125:3789–3799

    CAS  PubMed  Google Scholar 

  • Paul P, Chaturvedi P, Selymesi M, Ghatak A, Mesihovic A, Scharf KD, Weckwerth W, Simm S, Schleiff E (2016) The membrane proteome of male gametophyte in Solanum lycopersicum. J Proteomics 131:48–60

    Article  CAS  PubMed  Google Scholar 

  • Pearce LR, Komander D, Alessi DR (2010) The nuts and bolts of AGC protein kinases. Nat Rev Mol Cell Biol 11:9–22

    Article  CAS  PubMed  Google Scholar 

  • Peng H, Chun J, Ai TB, Tong YA, Zhang R, Zhao MM, Chen F, Wang SH (2012) MicroRNA profiles and their control of male gametophyte development in rice. Plant Mol Biol 80:85–102

    Article  CAS  PubMed  Google Scholar 

  • Pertl H, Schulze WX, Obermeyer G (2009) The pollen organelle membrane proteome reveals highly spatial-temporal dynamics during germination and tube growth of lily pollen. J Proteome Res 8:5142–5152

    Article  CAS  PubMed  Google Scholar 

  • Pina C, Pinto F, Feijo JA, Becker JD (2005) Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, and gene expression regulation. Plant Physiol 138:744–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pirone-Davies C, Prior N, von Aderkas P, Smith D, Hardie D, Friedman WE, Mathews S (2016) Insights from the pollination drop proteome and the ovule transcriptome of Cephalotaxus at the time of pollination drop production. Ann Bot 117:973–984

    Article  PubMed  PubMed Central  Google Scholar 

  • Qin Y, Leydon AR, Manziello A, Pandey R, Mount D, Denic S, Vasic B, Johnson MA, Palanivelu R (2009) Penetration of the stigma and style elicits a novel transcriptome in pollen tubes, pointing to genes critical for growth in a pistil. PLoS Genet 5. doi:10.1371/journal.pgen.1000621

  • Qiu YL, Taylor AB, McManus HA (2012) Evolution of the life cycle in land plants. J Syst Evol 50:171–194

    Article  Google Scholar 

  • Quinn CR, Iriyama R, Fernando DD (2014) Expression patterns of conserved microRNAs in the male gametophyte of loblolly pine (Pinus taeda). Plant Reprod 27:69–78

    Article  CAS  PubMed  Google Scholar 

  • Raghavan V (2003) Some reflections on double fertilization, from its discovery to the present. New Phytol 159:565–583

    Article  CAS  Google Scholar 

  • Reddy AS, Day IS, Gohring J, Barta A (2012) Localization and dynamics of nuclear speckles in plants. Plant Physiol 158:67–77

    Article  CAS  PubMed  Google Scholar 

  • Reiser L, Fischer RL (1993) The ovule and the embryo sac. Plant Cell 5:1291–1301

    Article  PubMed  PubMed Central  Google Scholar 

  • Rejon JD, Delalande F, Schaeffer-Reiss C, Carapito C, Zienkiewicz K, de Dios AJ, Isabel Rodriguez-Garcia M, Van Dorsselaer A, Jesus Castro A (2013) Proteomics profiling reveals novel proteins and functions of the plant stigma exudate. J Exp Bot 64:5695–5705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reňák D, Dupľáková N, Honys D (2012) Wide-scale screening of T-DNA lines for transcription factor genes affecting male gametophyte development in Arabidopsis. Sex Plant Reprod 25:39–60

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez de Francisco L, Romero-Rodriguez MC, Navarro-Cerrillo RM, Minino V, Perdomo O, Jorrin-Novo JV (2016) Characterization of the orthodox Pinus occidentalis seed and pollen proteomes by using complementary gel-based and gel-free approaches. J Proteomics 143:382–389

    Article  CAS  PubMed  Google Scholar 

  • Röhrig H, Colby T, Schmidt J, Harzen A, Facchinelli F, Bartels D (2008) Analysis of desiccation-induced candidate phosphoproteins from Craterostigma plantagineum isolated with a modified metal oxide affinity chromatography procedure. Proteomics 8:3548–3560

    Article  PubMed  CAS  Google Scholar 

  • Rotman N, Durbarry A, Wardle A, Yang WC, Chaboud A, Faure JE, Berger F, Twell D (2005) A novel class of MYB factors controls sperm-cell formation in plants. Curr Biol 15:244–248

    Article  CAS  PubMed  Google Scholar 

  • Russell SD, Bhalla PL, Singh MB (2008) Transcriptome-based examination of putative pollen allergens of rice (Oryza sativa ssp. japonica). Mol Plant 1:751–759

    Article  CAS  PubMed  Google Scholar 

  • Russell SD, Gou X, Wong CE, Wang X, Yuan T, Wei X, Bhalla PL, Singh MB (2012) Genomic profiling of rice sperm cell transcripts reveals conserved and distinct elements in the flowering plant male germ lineage. New Phytol 195:560–573

    Article  CAS  PubMed  Google Scholar 

  • Rutley N, Twell D (2015) A decade of pollen transcriptomics. Plant Reprod 28:73–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saha B, Sircar G, Pandey N, Gupta Bhattacharya S (2015) Mining novel allergens from coconut pollen employing manual de novo sequencing and homology-driven proteomics. J Proteome Res 14:4823–4833

    Article  CAS  PubMed  Google Scholar 

  • Šamaj J, Muller J, Beck M, Böhm N, Menzel D (2006) Vesicular trafficking, cytoskeleton and signalling in root hairs and pollen tubes. Trends Plant Sci 11:594–600

    Article  PubMed  CAS  Google Scholar 

  • Sanchez SE, Petrillo E, Kornblihtt AR, Yanovsky MJ (2011) Alternative splicing at the right time. RNA Biol 8:954–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanetomo R, Hosaka K (2013) Pollen transcriptome analysis of Solanum tuberosum (2n=4x=48), S-demissum (2n=6x=72), and their reciprocal F-1 hybrids. Plant Cell Rep 32:623–636

    Article  CAS  PubMed  Google Scholar 

  • Sang YL, Xu M, Ma FF, Chen H, Xu XH, Gao XQ, Zhang XS (2012) Comparative proteomic analysis reveals similar and distinct features of proteins in dry and wet stigmas. Proteomics 12:1983–1998

    Article  CAS  PubMed  Google Scholar 

  • Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470

    Article  CAS  PubMed  Google Scholar 

  • Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Scholkopf B, Weigel D, Lohmann JU (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37:501–506

    Article  CAS  PubMed  Google Scholar 

  • Schmidt H, Gelhaus C, Nebendahl M, Janssen O, Petersen A (2010) Characterization of Phleum pratense pollen extracts by 2-D DIGE and allergen immunoreactivity. Proteomics 10:4352–4362

    Article  CAS  PubMed  Google Scholar 

  • Schreiber DN, Bantin J, Dresselhaus T (2004) The MADS box transcription factor ZmMADS2 is required for anther and pollen maturation in maize and accumulates in apoptotic bodies during anther dehiscence. Plant Physiol 134:1069–1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulten V, Greenbaum JA, Hauser M, McKinney DM, Sidney J, Kolla R, Lindestam Arlehamn CS, Oseroff C, Alam R, Broide DH, Ferreira F, Grey HM, Sette A, Peters B (2013) Previously undescribed grass pollen antigens are the major inducers of T helper 2 cytokine-producing T cells in allergic individuals. Proc Natl Acad Sci U S A 110:3459–3464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen Y, Venu RC, Nobuta K, Wu X, Notibala V, Demirci C, Meyers BC, Wang GL, Ji G, Li QQ (2011) Transcriptome dynamics through alternative polyadenylation in developmental and environmental responses in plants revealed by deep sequencing. Genome Res 21:1478–1486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheoran IS, Sproule KA, Olson DJH, Ross ARS, Sawhney VK (2006) Proteome profile and functional classification of proteins in Arabidopsis thaliana (Landsberg erecta) mature pollen. Sex Plant Reprod 19:185–196

    Article  CAS  Google Scholar 

  • Sheoran IS, Ross ARS, Olson DJH, Sawhney VK (2007) Proteomic analysis of tomato (Lycopersicon esculentum) pollen. J Exp Bot 58:3525–3535

    Article  CAS  PubMed  Google Scholar 

  • Sheoran IS, Pedersen EJ, Ross ARS, Sawhney VK (2009a) Dynamics of protein expression during pollen germination in canola (Brassica napus). Planta 230:779–793

    Article  CAS  PubMed  Google Scholar 

  • Sheoran IS, Ross ARS, Olson DJH, Sawhney VK (2009b) Differential expression of proteins in the wild type and 7B-1 male-sterile mutant anthers of tomato (Solanum lycopersicum): a proteomic analysis. J Proteomics 71:624–636

    Article  CAS  PubMed  Google Scholar 

  • Slotkin RK, Vaughn M, Borges F, Tanurdzic M, Becker JD, Feijo JA, Martienssen RA (2009) Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell 136:461–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sousa R, Osório H, Duque L, Ribeiro H, Cruz A, Anbreu I (2014) Identification of Plantago lanceolata pollen allergens using an immunoproteomic approach. J Investig Allergol Clin Immunol 24:177–183

    CAS  PubMed  Google Scholar 

  • Strasburger E (1884) Neue Untersuchungen uber den Befruchtungsvorgang bei den Phanerogamen als Grundlage fur eine Theorie der Zeugung. Gustav Fischer, Jena

    Book  Google Scholar 

  • Suwabe K, Suzuki G, Takahashi H, Shiono K, Endo M, Yano K, Fujita M, Masuko H, Saito H, Fujioka T, Kaneko F, Kazama T, Mizuta Y, Kawagishi-Kobayashi M, Tsutsumi N, Kurata N, Nakazono M, Watanabe M (2008) Separated transcriptomes of male gametophyte and tapetum in rice: validity of a laser microdissection (LM) microarray. Plant Cell Physiol 49:1407–1416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang X, Zhang ZY, Zhang WJ, Zhao XM, Li X, Zhang D, Liu QQ, Tang WH (2010) Global gene profiling of laser-captured pollen mother cells indicates molecular pathways and gene subfamilies involved in rice meiosis. Plant Physiol 154:1855–1870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran F, Penniket C, Patel RV, Provart NJ, Laroche A, Rowland O, Robert LS (2013) Developmental transcriptional profiling reveals key insights into Triticeae reproductive development. Plant J 74:971–988

    Article  CAS  PubMed  Google Scholar 

  • Tsubomura M, Kurita M, Watanabe A (2016) Determination of male strobilus developmental stages by cytological and gene expression analyses in Japanese cedar (Cryptomeria japonica). Tree Physiol 36:653–666

    Article  PubMed  PubMed Central  Google Scholar 

  • Twell D, Oh S-A, Honys D (2006) Pollen development, a genetic and transcriptomic view. In: Malhó R (ed) Plant cell monographs: the pollen tube, vol 3. Springer, Berlin, pp 15–45

    Google Scholar 

  • Valero Galvan J, Valledor L, Gonzalez Fernandez R, Navarro Cerrillo RM, Jorrin-Novo JV (2012) Proteomic analysis of Holm oak (Quercus ilex subsp. ballota [Desf.] Samp.) pollen. J Proteomics 75:2736–2744

    Article  CAS  PubMed  Google Scholar 

  • Verelst W, Saedler H, Muenster T (2007a) MIKC* MADS-protein complexes bind motifs enriched in the proximal region of late pollen-specific Arabidopsis promoters. Plant Physiol 143:447–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verelst W, Twell D, de Folter S, Immink R, Saedler H, Muenster T (2007b) MADS-complexes regulate transcriptome dynamics during pollen maturation. Genome Biol 8. doi:10.1186/gb-2007-8-11-r249

  • Vogler F, Konrad SSA, Sprunck S (2015) Knockin’ on pollen’s door: live cell imaging of early polarization events in germinating Arabidopsis pollen. Front Plant Sci 6. doi:10.3389/fpls.2015.00246

  • Wang Y, Zhang W-Z, Song L-F, Zou J-J, Su Z, Wu W-H (2008) Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis. Plant Physiol 148:1201–1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNAseq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Sheng X, Shu Z, Li D, Pan J, Ye X, Chang P, Li X, Wang Y (2016) Combined cytological and transcriptomic analysis reveals a nitric oxide signaling pathway involved in cold-inhibited Camellia sinensis pollen tube growth. Front Plant Sci 7:456. doi:10.3389/fpls.2016.00456

    PubMed  PubMed Central  Google Scholar 

  • Wei LQ, Xu WY, Deng ZY, Su Z, Xue Y, Wang T (2010) Genome-scale analysis and comparison of gene expression profiles in developing and germinated pollen in Oryza sativa. BMC Genomics 11:338. doi:10.1186/1471-2164-11-338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wei LQ, Yan LF, Wang T (2011) Deep sequencing on genome-wide scale reveals the unique composition and expression patterns of microRNAs in developing pollen of Oryza sativa. Genome Biol 12. doi:10.1186/gb-2011-12-6-r53

  • Whittle CA, Malik MR, Li R, Krochko JE (2010) Comparative transcript analyses of the ovule, microspore, and mature pollen in Brassica napus. Plant Mol Biol 72:279–299

    Article  CAS  PubMed  Google Scholar 

  • Williams JH, Taylor ML, O’Meara BC (2014a) Repeated evolution of tricellular (and bicellular) pollen. Am J Bot 101:559–571

    Article  PubMed  Google Scholar 

  • Williams JS, Der JP, de Pamphilis CW, Kao TH (2014b) Transcriptome analysis reveals the same 17 S-locus F-box genes in two haplotypes of the self-incompatibility locus of Petunia inflata. Plant Cell 26:2873–2888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Shahid MQ, Guo H, Yin W, Chen Z, Wang L, Liu X, Lu Y (2014) Comparative cytological and transcriptomic analysis of pollen development in autotetraploid and diploid rice. Plant Reprod 27:181–196

    Article  CAS  PubMed  Google Scholar 

  • Xiao L, Wang H, Wan P, Kuang T, He Y (2011) Genome-wide transcriptome analysis of gametophyte development in Physcomitrella patens. BMC Plant Biol 11:177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xin H-P, Peng X-B, Ning J, Yan T-T, Ma L-G, Sun M-X (2011) Expressed sequence-tag analysis of tobacco sperm cells reveals a unique transcriptional profile and selective persistence of paternal transcripts after fertilization. Sex Plant Reprod 24:37–46

    Article  CAS  PubMed  Google Scholar 

  • Xing D, Li QQ (2011) Alternative polyadenylation and gene expression regulation in plants. Wiley Interdiscip Rev RNA 2:445–458

    Article  CAS  PubMed  Google Scholar 

  • Xu XH, Chen H, Sang YL, Wang F, Ma JP, Gao X-Q, Zhang XS (2012) Identification of genes specifically or preferentially expressed in maize silk reveals similarity and diversity in transcript abundance of different dry stigmas. BMC Genomics:13. doi:10.1186/1471-2164-13-294

  • Yang H, Yang N, Wang T (2016) Proteomic analysis reveals the differential histone programs between male germline cells and vegetative cells in Lilium davidii. Plant J 85:660–674

    Article  CAS  PubMed  Google Scholar 

  • Zhang X-M, Zhao L, Larson-Rabin Z, Li D-Z, Guo Z-H (2012) De novo sequencing and characterization of the floral transcriptome of Dendrocalamus latiflorus (Poaceae: Bambusoideae). PLoS One 7. doi:10.1371/journal.pone.0042082

  • Zhang H, Egger RL, Kelliher T, Morrow D, Fernandes J, Nan GL, Walbot V (2014) Transcriptomes and proteomes define gene expression progression in pre-meiotic maize anthers. G3 (Bethesda) 4:993–1010

    Article  CAS  Google Scholar 

  • Zhao X, Yang N, Wang T (2013) Comparative proteomic analysis of generative and sperm cells reveals molecular characteristics associated with sperm development and function specialization. J Proteome Res 12:5058–5071

    Article  CAS  PubMed  Google Scholar 

  • Zhao P, Zhang L, Zhao L (2015) Dissection of the style’s response to pollination using transcriptome profiling in self-compatible (Solanum pimpinellifolium) and self-incompatible (Solanum chilense) tomato species. BMC Plant Biol 15:119. doi:10.1186/s12870-015-0492-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao F, Elkelish A, Durner J, Lindermayr C, Winkler JB, Ruёff F, Behrendt H, Traidl-Hoffmann C, Holzinger A, Kofler W, Braun P, von Toerne C, Hauck SM, Ernst D, Frank U (2016) Common ragweed (Ambrosia artemisiifolia L.): allergenicity and molecular characterization of pollen after plant exposure to elevated NO2. Plant Cell Environ 39:147–164

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Yin H, Chen J, Liu X, Gao Y, Wu J, Zhang S (2016) Gene-expression profile of developing pollen tube of Pyrus bretschneideri. Gene Expr Patterns 20:11–21

    Article  CAS  PubMed  Google Scholar 

  • Zou J, Song L, Zhang W, Wang Y, Ruan S, Wu W-H (2009) Comparative proteomic analysis of Arabidopsis mature pollen and germinated pollen. J Integr Plant Biol 51:438–455

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Czech Science Foundation (grants no. 15–16050S and 17-23183S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Honys .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Fíla, J., Záveská Drábková, L., Gibalová, A., Honys, D. (2017). When Simple Meets Complex: Pollen and the -Omics. In: Obermeyer, G., Feijó, J. (eds) Pollen Tip Growth. Springer, Cham. https://doi.org/10.1007/978-3-319-56645-0_10

Download citation

Publish with us

Policies and ethics