Parallel Implementations of Masking Schemes and the Bounded Moment Leakage Model

  • Gilles Barthe
  • François Dupressoir
  • Sebastian Faust
  • Benjamin Grégoire
  • François-Xavier Standaert
  • Pierre-Yves Strub
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10210)

Abstract

In this paper, we provide a necessary clarification of the good security properties that can be obtained from parallel implementations of masking schemes. For this purpose, we first argue that (i) the probing model is not straightforward to interpret, since it more naturally captures the intuitions of serial implementations, and (ii) the noisy leakage model is not always convenient, e.g. when combined with formal methods for the verification of cryptographic implementations. Therefore we introduce a new model, the bounded moment model, that formalizes a weaker notion of security order frequently used in the side-channel literature. Interestingly, we prove that probing security for a serial implementation implies bounded moment security for its parallel counterpart. This result therefore enables an accurate understanding of the links between formal security analyses of masking schemes and experimental security evaluations based on the estimation of statistical moments. Besides its consolidating nature, our work also brings useful technical contributions. First, we describe and analyze refreshing and multiplication algorithms that are well suited for parallel implementations and improve security against multivariate side-channel attacks. Second, we show that simple refreshing algorithms (with linear complexity) that are not secure in the continuous probing model are secure in the continuous bounded moment model. Eventually, we discuss the independent leakage assumption required for masking to deliver its security promises, and its specificities related to the serial or parallel nature of an implementation.

Notes

Acknowledgements

Sebastian Faust is funded by the Emmy Noether Program FA 1320/1-1 of the German Research Foundation (DFG). François-Xavier Standaert is a research associate of the Belgian Fund for Scientific Research (F.R.S.-FNRS). This work has been funded in parts by projects S2013/ICE-2731 N-GREENS Software-CM, ONR Grants N000141210914 and N000141512750, FP7 Marie Curie Actions-COFUND 291803 and ERC project 280141.

References

  1. 1.
    Francillon, A., Rohatgi, P. (eds.): CARDIS 2013. LNCS, vol. 8419. Springer, Heidelberg (2014)Google Scholar
  2. 2.
    Prouff, E., Schaumont, P. (eds.): CHES 2012. LNCS, vol. 7428. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33027-8 MATHGoogle Scholar
  3. 3.
    Güneysu, T., Handschuh, H. (eds.): CHES 2015. LNCS, vol. 9293. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48324-4 MATHGoogle Scholar
  4. 4.
    Gierlichs, B., Poschmann, A.Y. (eds.): CHES 2016. LNCS, vol. 9813. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53140-2 MATHGoogle Scholar
  5. 5.
    Wiener, M. (ed.): CRYPTO 1999. LNCS, vol. 1666. Springer, Heidelberg (1999). doi:10.1007/3-540-48405-1 MATHGoogle Scholar
  6. 6.
    Oswald, E., Fischlin, M. (eds.): EUROCRYPT 2015. LNCS, vol. 9056. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46800-5 MATHGoogle Scholar
  7. 7.
    Fischlin, M., Coron, J.-S. (eds.): EUROCRYPT 2016. LNCS, vol. 9666. Springer, Heidelberg (2016)MATHGoogle Scholar
  8. 8.
    Joye, M., Moradi, A. (eds.): CARDIS 2014. LNCS, vol. 8968. Springer, Heidelberg (2015). doi:10.1007/978-3-319-16763-3 Google Scholar
  9. 9.
    Andrychowicz, M., Dziembowski, S., Faust, S.: Circuit compilers with O(1/\(\backslash \)n)) leakage rate. In: EUROCRYPT 2016, Part II [7], pp. 586–615 (2016)Google Scholar
  10. 10.
    Archambeau, C., Peeters, E., Standaert, F.-X., Quisquater, J.-J.: Template attacks in principal subspaces. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 1–14. Springer, Heidelberg (2006). doi:10.1007/11894063_1 CrossRefGoogle Scholar
  11. 11.
    Balasch, J., Gierlichs, B., Grosso, V., Reparaz, O., Standaert, F.-X.: On the cost of lazy engineering for masked software implementations. In: Joye, M., Moradi, A. (eds.) CARDIS 2014. LNCS, vol. 8968, pp. 64–81. Springer, Heidelberg (2015). doi:10.1007/978-3-319-16763-3_5 Google Scholar
  12. 12.
    Balasch, J., Gierlichs, B., Reparaz, O., Verbauwhede, I.: DPA, bitslicing and masking at 1 GHz. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 599–619. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48324-4_30 CrossRefGoogle Scholar
  13. 13.
    Barthe, G., Belaïd, S., Dupressoir, F., Fouque, P.-A., Grégoire, B., Strub, P.-Y.: Verified proofs of higher-order masking. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 457–485. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46800-5_18 Google Scholar
  14. 14.
    Barthe, G., Belaid, S., Dupressoir, F., Fouque, P.-A., Gregoire, B., Strub, P.-Y., Zucchini, R.: Strong non-interference and type-directed higher-order masking. In: Proceedings of ACM CCS (2016, to appear)Google Scholar
  15. 15.
    Barthe, G., Dupressoir, F., Faust, S., Grégoire, B., Standaert, F., Strub, P.: Parallel implementations of masking schemes and the bounded moment leakage model. IACR Cryptol. ePrint Arch. 2016, 912 (2016)Google Scholar
  16. 16.
    Batina, L., Gierlichs, B., Prouff, E., Rivain, M., Standaert, F., Veyrat-Charvillon, N.: Mutual information analysis: a comprehensive study. J. Cryptol. 24(2), 269–291 (2011)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Battistello, A., Coron, J.-S., Prouff, E., Zeitoun, R.: Horizontal side-channel attacks and countermeasures on the ISW masking scheme. In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 23–39. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53140-2_2 CrossRefGoogle Scholar
  18. 18.
    Bayrak, A.G., Regazzoni, F., Novo, D., Ienne, P.: Sleuth: automated verification of software power analysis countermeasures. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 293–310. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40349-1_17 CrossRefGoogle Scholar
  19. 19.
    Belaïd, S., Benhamouda, F., Passelègue, A., Prouff, E., Thillard, A., Vergnaud, D.: Randomness complexity of private circuits for multiplication. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 616–648. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49896-5_22 CrossRefGoogle Scholar
  20. 20.
    Bilgin, B., Daemen, J., Nikov, V., Nikova, S., Rijmen, V., Assche, G.: Efficient and first-order DPA resistant implementations of keccak. In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 187–199. Springer, Heidelberg (2014). doi:10.1007/978-3-319-08302-5_13 Google Scholar
  21. 21.
    Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-order threshold implementations. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 326–343. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45608-8_18 Google Scholar
  22. 22.
    Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: A more efficient AES threshold implementation. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014. LNCS, vol. 8469, pp. 267–284. Springer, Heidelberg (2014). doi:10.1007/978-3-319-06734-6_17 CrossRefGoogle Scholar
  23. 23.
    Bilgin, B., Nikova, S., Nikov, V., Rijmen, V., Stütz, G.: Threshold implementations of all 3 \(\times \) 3 and 4 \(\times \) 4 S-boxes. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 76–91. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33027-8_5 CrossRefGoogle Scholar
  24. 24.
    Blömer, J., Guajardo, J., Krummel, V.: Provably secure masking of AES. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 69–83. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30564-4_5 CrossRefGoogle Scholar
  25. 25.
    Carlet, C., Danger, J., Guilley, S., Maghrebi, H., Prouff, E.: Achieving side-channel high-order correlation immunity with leakage squeezing. J. Cryptogr. Eng. 4(2), 107–121 (2014)CrossRefGoogle Scholar
  26. 26.
    Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counteract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999). doi:10.1007/3-540-48405-1_26 Google Scholar
  27. 27.
    Chen, C., Eisenbarth, T., Shahverdi, A., Ye, X.: Balanced encoding to mitigate power analysis: a case study. In: Joye, M., Moradi, A. (eds.) CARDIS 2014. LNCS, vol. 8968, pp. 49–63. Springer, Heidelberg (2015). doi:10.1007/978-3-319-16763-3_4 Google Scholar
  28. 28.
    De Cnudde, T., Reparaz, O., Bilgin, B., Nikova, S., Nikov, V., Rijmen, V.: Masking AES with \(d+1\) shares in hardware. In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 194–212. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53140-2_10 CrossRefGoogle Scholar
  29. 29.
    Coron, J.-S., Giraud, C., Prouff, E., Renner, S., Rivain, M., Vadnala, P.K.: Conversion of security proofs from one leakage model to another: a new issue. In: Schindler, W., Huss, S.A. (eds.) COSADE 2012. LNCS, vol. 7275, pp. 69–81. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29912-4_6 CrossRefGoogle Scholar
  30. 30.
    Coron, J.-S., Prouff, E., Rivain, M.: Side channel cryptanalysis of a higher order masking scheme. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 28–44. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74735-2_3 CrossRefGoogle Scholar
  31. 31.
    Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing attacks to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 423–440. Springer, Heidelberg (2014). doi:10.1007/978-3-642-55220-5_24 CrossRefGoogle Scholar
  32. 32.
    Duc, A., Faust, S., Standaert, F.-X.: Making masking security proofs concrete. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 401–429. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46800-5_16 Google Scholar
  33. 33.
    Durvaux, F., Standaert, F.-X.: From improved leakage detection to the detection of points of interests in leakage traces. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 240–262. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49890-3_10 CrossRefGoogle Scholar
  34. 34.
    Durvaux, F., Standaert, F.-X., Pozo, S.M.: Towards easy leakage certification. In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 40–60. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53140-2_3 CrossRefGoogle Scholar
  35. 35.
    Dziembowski, S., Faust, S.: Leakage-resilient cryptography from the inner-product extractor. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 702–721. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25385-0_38 CrossRefGoogle Scholar
  36. 36.
    Dziembowski, S., Faust, S., Herold, G., Journault, A., Masny, D., Standaert, F.-X.: Towards sound fresh re-keying with hard (physical) learning problems. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 272–301. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53008-5_10 CrossRefGoogle Scholar
  37. 37.
    Eldib, H., Wang, C.: Synthesis of masking countermeasures against side channel attacks. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 114–130. Springer, Heidelberg (2014). doi:10.1007/978-3-319-08867-9_8 Google Scholar
  38. 38.
    Eldib, H., Wang, C., Schaumont, P.: Formal verification of software countermeasures against side-channel attacks. ACM Trans. Softw. Eng. Methodol. 24(2), 11:1–11:24 (2014)CrossRefGoogle Scholar
  39. 39.
    Eldib, H., Wang, C., Taha, M.M.I., Schaumont, P.: Quantitative masking strength: quantifying the power side-channel resistance of software code. IEEE Trans. CAD Integr. Circuits Syst. 34(10), 1558–1568 (2015)CrossRefGoogle Scholar
  40. 40.
    Grosso, V., Leurent, G., Standaert, F.-X., Varıcı, K.: LS-designs: bitslice encryption for efficient masked software implementations. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 18–37. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46706-0_2 Google Scholar
  41. 41.
    Grosso, V., Standaert, F.-X., Prouff, E.: Low entropy masking schemes, revisited. In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 33–43. Springer, Heidelberg (2014). doi:10.1007/978-3-319-08302-5_3 Google Scholar
  42. 42.
    Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45146-4_27 CrossRefGoogle Scholar
  43. 43.
    Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). doi:10.1007/3-540-48405-1_25 Google Scholar
  44. 44.
    Longo, J., Mulder, E., Page, D., Tunstall, M.: SoC it to EM: electromagnetic side-channel attacks on a complex system-on-chip. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 620–640. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48324-4_31 CrossRefGoogle Scholar
  45. 45.
    Mangard, S., Popp, T., Gammel, B.M.: Side-channel leakage of masked CMOS gates. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 351–365. Springer, Heidelberg (2005). doi:10.1007/978-3-540-30574-3_24 CrossRefGoogle Scholar
  46. 46.
    Mangard, S., Pramstaller, N., Oswald, E.: Successfully attacking masked AES hardware implementations. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 157–171. Springer, Heidelberg (2005). doi:10.1007/11545262_12 CrossRefGoogle Scholar
  47. 47.
    Moradi, A.: Statistical tools flavor side-channel collision attacks. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 428–445. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29011-4_26 CrossRefGoogle Scholar
  48. 48.
    Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20465-4_6 CrossRefGoogle Scholar
  49. 49.
    Moss, A., Oswald, E., Page, D., Tunstall, M.: Compiler assisted masking. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 58–75. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33027-8_4 CrossRefGoogle Scholar
  50. 50.
    Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of nonlinear functions in the presence of glitches. J. Cryptol. 24(2), 292–321 (2011)MathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    Paul, C.R.: Introduction to Electromagnetic Compatibility. Wiley & Sons, Hoboken (2006)Google Scholar
  52. 52.
    Poschmann, A., Moradi, A., Khoo, K., Lim, C., Wang, H., Ling, S.: Side-channel resistant crypto for less than 2,300 GE. J. Cryptol. 24(2), 322–345 (2011)MathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    Prouff, E., Rivain, M.: Masking against side-channel attacks: a formal security proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 142–159. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38348-9_9 CrossRefGoogle Scholar
  54. 54.
    Prouff, E., Rivain, M., Bevan, R.: Statistical analysis of second order differential power analysis. IEEE Trans. Comput. 58(6), 799–811 (2009)MathSciNetCrossRefGoogle Scholar
  55. 55.
    Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating masking schemes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 764–783. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47989-6_37 CrossRefGoogle Scholar
  56. 56.
    Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15031-9_28 CrossRefGoogle Scholar
  57. 57.
    Schneider, T., Moradi, A.: Leakage assessment methodology. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 495–513. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48324-4_25 CrossRefGoogle Scholar
  58. 58.
    Standaert, F.-X., Archambeau, C.: Using subspace-based template attacks to compare and combine power and electromagnetic information leakages. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 411–425. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85053-3_26 CrossRefGoogle Scholar
  59. 59.
    Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01001-9_26 CrossRefGoogle Scholar
  60. 60.
    Standaert, F.-X., Veyrat-Charvillon, N., Oswald, E., Gierlichs, B., Medwed, M., Kasper, M., Mangard, S.: The world is not enough: another look on second-order DPA. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 112–129. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17373-8_7 CrossRefGoogle Scholar
  61. 61.
    Tiri, K., Verbauwhede, I.: Securing encryption algorithms against DPA at the logic level: next generation smart card technology. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 125–136. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45238-6_11 CrossRefGoogle Scholar
  62. 62.
    Ullrich, M., de Cannière, C., Indesteege, S., Küçük, Ö., Mouha, N., Preneel, B.: Finding optimal bitsliced implementations of 4 \(\times \) 4-bit S-boxes. In: Symmetric Key Encryption Workshop 2011 (2011)Google Scholar
  63. 63.
    Waddle, J., Wagner, D.: Towards efficient second-order power analysis. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 1–15. Springer, Heidelberg (2004). doi:10.1007/978-3-540-28632-5_1 CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2017

Authors and Affiliations

  • Gilles Barthe
    • 1
  • François Dupressoir
    • 2
  • Sebastian Faust
    • 3
  • Benjamin Grégoire
    • 4
  • François-Xavier Standaert
    • 5
  • Pierre-Yves Strub
    • 6
  1. 1.IMDEA Software InstitutePozuelo de AlarcónSpain
  2. 2.University of SurreyGuildfordUK
  3. 3.Ruhr Universität BochumBochumGermany
  4. 4.Inria Sophia-Antipolis – MéditerranéeValbonneFrance
  5. 5.Université Catholique de LouvainLouvain-la-NeuveBelgium
  6. 6.Ecole PolytechniquePalaiseauFrance

Personalised recommendations