Advertisement

Cryptography with Updates

  • Prabhanjan Ananth
  • Aloni Cohen
  • Abhishek Jain
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10211)

Abstract

Starting with the work of Bellare, Goldreich and Goldwasser [CRYPTO’94], a rich line of work has studied the design of updatable cryptographic primitives. For example, in an updatable signature scheme, it is possible to efficiently transform a signature over a message into a signature over a related message without recomputing a fresh signature.

In this work, we continue this line of research, and perform a systematic study of updatable cryptography. We take a unified approach towards adding updatability features to recently studied cryptographic objects such as attribute-based encryption, functional encryption, witness encryption, indistinguishability obfuscation, and many others that support non-interactive computation over inputs. We, in fact, go further and extend our approach to classical protocols such as zero-knowledge proofs and secure multiparty computation.

To accomplish this goal, we introduce a new notion of updatable randomized encodings that extends the standard notion of randomized encodings to incorporate updatability features. We show that updatable randomized encodings can be used to generically transform cryptographic primitives to their updatable counterparts.

We provide various definitions and constructions of updatable randomized encodings based on varying assumptions, ranging from one-way functions to compact functional encryption.

References

  1. 1.
    Agrawal, S., Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption: new perspectives and lower bounds. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 500–518. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40084-1_28 CrossRefGoogle Scholar
  2. 2.
    Ananth, P., Cohen, A., Jain, A.: Cryptography with updates. Cryptology ePrint Archive, Report 2016/934 (2016). http://eprint.iacr.org/2016/934
  3. 3.
    Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 308–326. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-47989-6_15 CrossRefGoogle Scholar
  4. 4.
    Ananth, P., Jain, A., Sahai, A.: Indistinguishability obfuscation from functional encryption for simple functions. Technical report, Cryptology ePrint Archive, Report 2015/730 (2015)Google Scholar
  5. 5.
    Ananth, P., Jain, A., Sahai, A.: Patchable indistinguishability obfuscation: io for evolving software. IACR Cryptology ePrint Archive, 2015:1084 (2015)Google Scholar
  6. 6.
    Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptogaphy in nc0. SIAM J. Comput. 36(4), 845–888 (2007)CrossRefMATHGoogle Scholar
  7. 7.
    Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson, Z., Song, D.: Provable data possession at untrusted stores. In: Proceedings of the 14th ACM Conference on Computer and Communications Security, pp. 598–609. ACM (2007)Google Scholar
  8. 8.
    Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption schemes with applications to secure distributed storage. In: Proceedings of the Network and Distributed System Security Symposium, NDSS 2005, San Diego, California, USA (2005)Google Scholar
  9. 9.
    Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). doi: 10.1007/3-540-44647-8_1 CrossRefGoogle Scholar
  10. 10.
    Bellare, M., Goldreich, O., Goldwasser, S.: Incremental cryptography: the case of hashing and signing. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 216–233. Springer, Heidelberg (1994). doi: 10.1007/3-540-48658-5_22 Google Scholar
  11. 11.
    Bellare, M., Goldreich, O., Goldwasser, S.: Incremental cryptography and application to virus protection. In: Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Computing, pp. 45–56. ACM (1995)Google Scholar
  12. 12.
    Bellare, M., Micciancio, D.: A new paradigm for collision-free hashing: incrementality at reduced cost. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 163–192. Springer, Heidelberg (1997). doi: 10.1007/3-540-69053-0_13 CrossRefGoogle Scholar
  13. 13.
    Bitansky, N., Garg, S., Lin, H., Pass, R., Telang, S.: Succinct randomized encodings and their applications. In: STOC (2015)Google Scholar
  14. 14.
    Bitansky, N., Nishimaki, R., Passelègue, A., Wichs, D.: From cryptomania to obfustopia through secret-key functional encryption. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 391–418. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-53644-5_15 CrossRefGoogle Scholar
  15. 15.
    Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional encryption. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science (FOCS), pp. 171–190. IEEE (2015)Google Scholar
  16. 16.
    Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryptography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144. Springer, Heidelberg (1998). doi: 10.1007/BFb0054122 CrossRefGoogle Scholar
  17. 17.
    Boneh, D., Freeman, D.M.: Homomorphic signatures for polynomial functions. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149–168. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-20465-4_10 CrossRefGoogle Scholar
  18. 18.
    Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic PRFs and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 410–428. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40041-4_23 CrossRefGoogle Scholar
  19. 19.
    Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-19571-6_16 CrossRefGoogle Scholar
  20. 20.
    Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-70936-7_29 CrossRefGoogle Scholar
  21. 21.
    Boneh, D., Waters, B.: Constrained pseudorandom functions and their applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 280–300. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-42045-0_15 CrossRefGoogle Scholar
  22. 22.
    Boyle, E., Goldwasser, S., Ivan, I.: Functional Signatures and pseudorandom functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-54631-0_29 CrossRefGoogle Scholar
  23. 23.
    Brakerski, Z., Vaikuntanathan, V.: Constrained key-homomorphic PRFs from standard lattice assumptions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 1–30. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46497-7_1 CrossRefGoogle Scholar
  24. 24.
    Buonanno, E., Katz, J., Yung, M.: Incremental unforgeable encryption. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 109–124. Springer, Heidelberg (2002). doi: 10.1007/3-540-45473-X_9 CrossRefGoogle Scholar
  25. 25.
    Canetti, R., Holmgren, J., Jain, A., Vaikuntanathan, V.: Indistinguishability obfuscation of iterated circuits and RAM programs. In: STOC (2015)Google Scholar
  26. 26.
    De Caro, A., Iovino, V., Jain, A., O’Neill, A., Paneth, O., Persiano, G.: On the achievability of simulation-based security for functional encryption. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 519–535. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40084-1_29 CrossRefGoogle Scholar
  27. 27.
    Chandran, N., Kanukurthi, B., Ostrovsky, R.: Locally updatable and locally decodable codes. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 489–514. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-54242-8_21 CrossRefGoogle Scholar
  28. 28.
    Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable proof systems and applications. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 281–300. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-29011-4_18 CrossRefGoogle Scholar
  29. 29.
    Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Succinct malleable NIZKs and an application to compact shuffles. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 100–119. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-36594-2_6 CrossRefGoogle Scholar
  30. 30.
    Dachman-Soled, D., Liu, F.-H., Shi, E., Zhou, H.-S.: Locally decodable and updatable non-malleable codes and their applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 427–450. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46494-6_18 Google Scholar
  31. 31.
    Fischlin, M.: Incremental cryptography and memory checkers. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 393–408. Springer, Heidelberg (1997). doi: 10.1007/3-540-69053-0_27 CrossRefGoogle Scholar
  32. 32.
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, Berkeley, CA, USA, 26–29 October 2013, pp. 40–49. IEEE Computer Society (2013)Google Scholar
  33. 33.
    Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Fully secure functional encryption without obfuscation. IACR Cryptology ePrint Archive, 2014:666 (2014)Google Scholar
  34. 34.
    Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications. In: Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing, pp. 467–476. ACM (2013)Google Scholar
  35. 35.
    Garg, S., Pandey, O.: Incremental program obfuscation. IACR Cryptology ePrint Archive, 2015:997 (2015)Google Scholar
  36. 36.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31-June 2, 2009, pp. 169–178 (2009)Google Scholar
  37. 37.
    Gentry, C., Halevi, S., Lu, S., Ostrovsky, R., Raykova, M., Wichs, D.: Garbled RAM revisited. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 405–422. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-55220-5_23 CrossRefGoogle Scholar
  38. 38.
    Gentry, C., Lewko, A., Waters, B.: Witness encryption from instance independent assumptions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 426–443. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-44371-2_24 CrossRefGoogle Scholar
  39. 39.
    Gentry, C., Lewko, A.B., Sahai, A., Waters, B.: Indistinguishability obfuscation from the multilinear subgroup elimination assumption. IACR Cryptology ePrint Archive, 2014:309 (2014)Google Scholar
  40. 40.
    Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM (JACM) 33(4), 792–807 (1986)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Goldwasser, S., Dov Gordon, S., Goyal, V., Jain, A., Katz, J., Liu, F.-H., Sahai, A., Shi, E., Zhou, H.-S.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-55220-5_32 CrossRefGoogle Scholar
  42. 42.
    Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable garbled circuits and succinct functional encryption. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) Symposium on Theory of Computing Conference, STOC 2013, Palo Alto, CA, USA, 1–4 June 2013, pp. 555–564. ACM (2013)Google Scholar
  43. 43.
    Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from LWE. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 503–523. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48000-7_25 CrossRefGoogle Scholar
  44. 44.
    Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signatures from standard lattices. In: Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, pp. 469–477. ACM (2015)Google Scholar
  45. 45.
    Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: Proceedings of the 13th ACM Conference on Computer and Communications Security, CCS 2006, Alexandria, VA, USA, October 30 - November 3, 2006, pp. 89–98 (2006)Google Scholar
  46. 46.
    Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation with applications to round-efficient secure computation. In: Proceedings of 41st Annual Symposium on Foundations of Computer Science, pp. 294–304. IEEE (2000)Google Scholar
  47. 47.
    Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-78967-3_9 CrossRefGoogle Scholar
  48. 48.
    Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseudorandom functions and applications. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security, pp. 669–684. ACM (2013)Google Scholar
  49. 49.
    Lin, H., Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation with non-trivial efficiency. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016, Part II. LNCS, vol. 9615, pp. 447–462. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49387-8_17 CrossRefGoogle Scholar
  50. 50.
    Lin, H., Pass, R., Seth, K., Telang, S.: Output-compressing randomized encodings and applications. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 96–124. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49096-9_5 CrossRefGoogle Scholar
  51. 51.
    Lu, S., Ostrovsky, R.: How to garble RAM programs? In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 719–734. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38348-9_42 CrossRefGoogle Scholar
  52. 52.
    Micciancio, D.: Oblivious data structures: applications to cryptography. In: Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, pp. 456–464. ACM (1997)Google Scholar
  53. 53.
    Mironov, I., Pandey, O., Reingold, O., Segev, G.: Incremental deterministic public-key encryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 628–644. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-29011-4_37 CrossRefGoogle Scholar
  54. 54.
    O’Neill, A.: Definitional issues in functional encryption. IACR Cryptology ePrint Archive, 2010:556 (2010)Google Scholar
  55. 55.
    Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). doi: 10.1007/11426639_27 CrossRefGoogle Scholar
  56. 56.
    Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In: Shmoys, D.B. (ed.) Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31–June 03, pp. 475–484. ACM (2014)Google Scholar
  57. 57.
    Shi, E., Bethencourt, J., Hubert Chan, T.H., Song, D., Perrig, A.: Multi-dimensional range query over encrypted data. In: 2007 IEEE Symposium on Security and Privacy (SP 2007), pp. 350–364. IEEE (2007)Google Scholar
  58. 58.
    Waters, B.: A punctured programming approach to adaptively secure functional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 678–697. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48000-7_33 CrossRefGoogle Scholar
  59. 59.
    Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: FOCS, pp. 162–167 (1986)Google Scholar
  60. 60.
    Zhandry, M.: How to avoid obfuscation using witness PRFs. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 421–448. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49099-0_16 CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2017

Authors and Affiliations

  1. 1.UCLALos AngelesUSA
  2. 2.MITCambridgeUSA
  3. 3.Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations