Skip to main content

Learning to Re-rank Medical Images Using a Bayesian Network-Based Thesaurus

  • 2141 Accesses

Part of the Lecture Notes in Computer Science book series (LNISA,volume 10193)

Abstract

In this paper, we believe that representing query and images with specific medical features allows to bridge the gap between the user information need and the searched images. Queries could be classified into three categories: textual, visual and combined. We present, in this work, the list of specific medical features such as image modality and image dimensionality. We exploit these specific features in a new medical image re-ranking method based on Bayesian network. Indeed, using a learning algorithm, we construct a Bayesian network that represents the relationships among these specific features appearing in a given image collection; this network is then considered as a thesaurus (specific for that collection). The relevance of an image to a given query is obtained by means of an inference process through the Bayesian network. Finally, the images are re-ranked based on combining their initial scores and the new scores. Experiments are performed on Medical ImageCLEF datasets from 2009 to 2012 and results show that our proposed model enhances significantly the image retrieval performance compared with BM25 model.

Keywords

  • Bayesian network
  • Specific medical features
  • Medical image re-ranking

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-56608-5_13
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-56608-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.

References

  1. Acid, S., Campos, L.M.D., Fernandez-luna, J.M., Huete, J.F.: An information retrieval model based on simple bayesian networks. Int. J. Intell. Syst. 18(2), 251–265 (2003)

    CrossRef  MATH  Google Scholar 

  2. Ayadi, H., Khemakhem, M.T., Daoud, M., Huang, J.X., Jemaa, M.B.: Mining correlations between medically dependent features and image retrieval models for query classification. In: JASIST 2016, in press

    Google Scholar 

  3. Ayadi, H., Khemakhem, M.T., Daoud, M., Jemaa, M.B., Huang, J.X.: Correlating medical-dependent query features with image retrieval models using association rules. In: Proceedings of the 22nd ACM CIKM, pp. 299–308 (2013)

    Google Scholar 

  4. Bashir, S., Rauber, A.: On the relationship between query characteristics and ir functions retrieval bias. JASIST 62(8), 1515–1532 (2011)

    CrossRef  Google Scholar 

  5. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Comput. Netw. ISDN Syst. 30(1–7), 107–117 (1998)

    CrossRef  Google Scholar 

  6. Cao, Z., Qin, T., Liu, T.-Y., Tsai, M.-F., Li, H.: Learning to rank: from pairwise approach to listwise approach. In: Proceedings of the 24th ICML, pp. 129–136 (2007)

    Google Scholar 

  7. Cronen-Townsend, S., Zhou, Y., Croft, W.B.: Predicting query performance. In: Proceedings of the 25th ACM SIGIR, pp. 299–306 (2002)

    Google Scholar 

  8. Gey, F.C.: Inferring probability of relevance using the method of logistic regression. In: Proceedings of the 17th ACM SIGIR, pp. 222–231 (1994)

    Google Scholar 

  9. Hauff, C., Azzopardi, L., Hiemstra, D.: The combination and evaluation of query performance prediction methods. In: Boughanem, M., Berrut, C., Mothe, J., Soule-Dupuy, C. (eds.) ECIR 2009. LNCS, vol. 5478, pp. 301–312. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00958-7_28

    CrossRef  Google Scholar 

  10. Kalpathy-Cramer, J., de Herrera, A.G.S., Demner-Fushman, D., Antani, S., Bedrick, S., Müller, H.: Evaluating performance of biomedical image retrieval systems- an overview of the medical image retrieval task at ImageCLEF 2004–2014. Comput. Med. Imaging Graph. 39, 55–61 (2014)

    CrossRef  Google Scholar 

  11. Kalpathy-Cramer, J., Müller, H., Bedrick, S., Eggel, I., de Herrera, A.G.S., Tsikrika,T.: Overview of the CLEF 2011 Medical Image Classification and Retrieval Tasks. In: CLEF (Notebook Papers/Labs/Workshop) (2011)

    Google Scholar 

  12. Kraaij, W., Westerveld, T., Hiemstra, D.: The importance of prior probabilities for entry page search. In Proceedings of the 25th ACM SIGIR, pp. 27–34 (2002)

    Google Scholar 

  13. Markonis, D., Holzer, M., Dungs, S., Vargas, A., Langs, G., Kriewel, S., Müller, H.: A survey on visual information search behavior and requirements of radiologists. Methods Inf. Med. 51, 539–548 (2012)

    CrossRef  Google Scholar 

  14. Metzler, D., Croft, W.B.: Linear feature-based models for information retrieval. Inf. Retr. 10(3), 257–274 (2007)

    CrossRef  Google Scholar 

  15. Müller, H., de Herrera, A.G.S., Kalpathy-Cramer, J., Demner-Fushman, D., Antani, S., Eggel, I.: Overview of the imageCLEF 2012 Medical Image Retrieval and Classification Tasks. In: CLEF 2012 Working Notes (2012)

    Google Scholar 

  16. Müller, H., Kalpathy–Cramer, J., Eggel, I., Bedrick, S., Radhouani, S., Bakke, B., Kahn, C.E., Hersh, W.: Overview of the CLEF 2009 medical image retrieval track. In: Peters, C., Caputo, B., Gonzalo, J., Jones, G.J.F., Kalpathy-Cramer, J., Müller, H., Tsikrika, T. (eds.) CLEF 2009. LNCS, vol. 6242, pp. 72–84. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15751-6_8

    CrossRef  Google Scholar 

  17. Müller, H., Kalpathy-Cramer, J., Eggel, I., Bedrick, S., Reisetter, J., Kahn Jr., C.E., Hersh, W.R.: Overview of the clef 2010 medical image retrieval track. In: CLEF (Notebook Papers/LABs/Workshops) (2010)

    Google Scholar 

  18. Nallapati, R.: Discriminative models for information retrieval. In: Proceedings of the 27th ACM SIGIR, pp. 64–71 (2004)

    Google Scholar 

  19. Ribeiro, B.A.N., Muntz, R.: A belief network model for IR. In: Proceedings of the 19th ACM SIGIR, pp. 253–260 (1996)

    Google Scholar 

  20. Turtle, H.R., Croft, W.B.: Efficient probabilistic inference for text retrieval. In: RIAO, pp. 644–662. CID (1991)

    Google Scholar 

  21. Wilcoxon, F.: Individual comparisons by ranking methods. Biom. Bull. 1(6), 80–83 (1945)

    CrossRef  Google Scholar 

  22. Wu, H., Sun, K., Deng, X., Zhang, Y., Che, B.: UESTC at imageCLEF 2012 medical tasks. In: Proceedings of CLEF, pp. 1–1 (2012)

    Google Scholar 

  23. Xu, X.-C., Xu, X.-S., Wang, Y., Wang, X.: A heterogeneous automatic feedback semi-supervised method for image reranking. In: Proceedings of the 22nd ACM CIKM, pp. 999–1008 (2013)

    Google Scholar 

  24. Yang, L., Hanjalic, A.: Supervised reranking for web image search. In: Proceedings of the 18th ACM MM, pp. 183–192 (2010)

    Google Scholar 

Download references

Acknowledgments

This work was supported by a discovery grant from the Natural Sciences and Engineering Research Council (NSERC) of Canada and an NSERC CREATE award. We thank all reviewers for their thorough review comments on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hajer Ayadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ayadi, H., Khemakhem, M.T., Huang, J.X., Daoud, M., Jemaa, M.B. (2017). Learning to Re-rank Medical Images Using a Bayesian Network-Based Thesaurus. In: , et al. Advances in Information Retrieval. ECIR 2017. Lecture Notes in Computer Science(), vol 10193. Springer, Cham. https://doi.org/10.1007/978-3-319-56608-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56608-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56607-8

  • Online ISBN: 978-3-319-56608-5

  • eBook Packages: Computer ScienceComputer Science (R0)