Advertisement

Localization of Impact Damage in Thin-Walled Composite Structure Using Variance-Based Continuous Wavelet Transform

  • R. JaneliukstisEmail author
  • S. Rucevskis
  • M. A. Sumbatyan
  • A. Chate
Chapter
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

This work is focused on damage localization in thin-walled two-dimensional composite structures. A two-stage low-velocity impact damage with severities of 5 and 9 J is applied to CFRP plate in different positions and a dynamic vibration test is conducted in order to extract the resonance frequencies and corresponding deflection shapes of the structure before and after each stage of damage. Deflection shapes serve as an input for spatial continuous wavelet transform in two dimensions to calculate the damage index and standardize it for every wavelet function. Overall, 16 wavelet functions are used with scale parameters ranging from 1 till 16. The nontrivial problem of scale selection is avoided by computing the variance of normalized scalogram (VNS) over all the scales of consideration for every wavelet. Cross-correlation of VNS values between all the wavelets is performed to reveal the wavelet pairs of similar performance. These wavelet pairs are selected to compute the average VNS (AVNS). Later, a universal threshold is applied to filter the peaks of AVNS to yield the location of damage for each case of severity. Results suggest that a damage can be localized without the consideration of a specific wavelet and scale parameter.

Keywords

Damage Wavelet Variance Scale Correlation Impact Composite Deflection shape Universal threshold Plate Scalogram 

Notes

Acknowledgements

This research has been performed under the funding from the Latvia State Research Programme, the grant agreement “Innovative Materials and Smart Technologies for Environmental Safety, IMATEH”.

References

  1. 1.
    D. Ginzburg, F. Pinto, O. Iervolino, M. Meo, Compos. Struct. 161, 187 (2017)CrossRefGoogle Scholar
  2. 2.
    E. Stelldinger, A. Kühhorn, M. Kober, Compos. Struct. 139, 30 (2016)CrossRefGoogle Scholar
  3. 3.
    T.O. Topac, B. Gozluklu, E. Gurses, D. Coker, Compos. A 92, 167 (2017)CrossRefGoogle Scholar
  4. 4.
    R. Toivola, P.-N. Lai, J. Yang, S.-H. Jang, A.K.-Y. Jen, B.D. Flinn, Compos. Sci. Technol. 139, 74 (2017)CrossRefGoogle Scholar
  5. 5.
    Y. Li, W. Zhang, Z.-W. Yang, J.-J. Zhang, S.-J. Tao, Infrared Phys. Technol. 76, 91 (2016)CrossRefGoogle Scholar
  6. 6.
    V.B. Dawari, G.R. Vesmawala, Proc. Eng. 51, 119 (2013)CrossRefGoogle Scholar
  7. 7.
    P. Qiao, K. Lu, W. Lestari, Wang. J Compos. Struct. 80, 409 (2007)CrossRefGoogle Scholar
  8. 8.
    P. Qiao, W. Lestari, Compos. Struct. 67, 365 (2005)CrossRefGoogle Scholar
  9. 9.
    M. Dilena, A. Morassi, Mech. Syst. Signal Process. 25, 1485 (2011)CrossRefGoogle Scholar
  10. 10.
    M. Cao, L. Ye, L. Zhou, Z. Su, R. Bai, Mech. Syst. Signal Process. 25, 630 (2011)CrossRefGoogle Scholar
  11. 11.
    J.-M. Ndambi, J. Vantomme, K. Harri, Eng. Struct. 24, 501 (2002)CrossRefGoogle Scholar
  12. 12.
    J.-T. Kim, Y.-S. Ryu, H.-M. Cho, N. Stubbs, Eng. Struct. 25, 57 (2003)CrossRefGoogle Scholar
  13. 13.
    A. Katunin, F. Holewik, Arch. Civil Mech. Eng. 13, 287 (2013)CrossRefGoogle Scholar
  14. 14.
    A. Katunin, P. Przystałka, Eng. Appl. Artif. Intell. 30, 73 (2014)CrossRefGoogle Scholar
  15. 15.
    A. Katunin, Mech. Syst. Signal Process. 25, 3153 (2011)CrossRefGoogle Scholar
  16. 16.
    A. Katunin, Arch. Civil Mech. Eng. 15, 251 (2015)CrossRefGoogle Scholar
  17. 17.
    A. Katunin, Compos. Struct. 118, 385 (2014)CrossRefGoogle Scholar
  18. 18.
    P. Qiao, W. Fan, Int. J. Solids Struct. 46, 4379 (2009)CrossRefGoogle Scholar
  19. 19.
    Y. Huang, D. Meyer, S. Nemat-Nasser, Mech. Mater. 41, 1096 (2009)CrossRefGoogle Scholar
  20. 20.
    Y.J. Yan, L.H. Yam, Compos. Struct. 58, 29 (2002)CrossRefGoogle Scholar
  21. 21.
    P.S. Addison, The Illustrated Wavelet Transform Handbook, Introductory Theory and Applications in Science, Engineering, Medicine and Finance (Taylor & Francis, New York-London, 2002)CrossRefzbMATHGoogle Scholar
  22. 22.
    H. Adeli, H. Kim, Wavelet-Based Vibration Control of Smart Buildings and Bridges (CRC Press, Taylor and Francis Group, Boca Raton, London, New York, 2009)Google Scholar
  23. 23.
    H. Kim, H. Melhem, Eng. Struct. 26, 347 (2004)CrossRefGoogle Scholar
  24. 24.
    W.L. Bayissa, N. Haritos, S. Thelandersson, Mech. Syst. Signal Process. 22, 1194 (2008)CrossRefGoogle Scholar
  25. 25.
    C.-C. Chang, L.-W. Chen, Mech. Syst. Signal Process. 19, 139 (2005)CrossRefGoogle Scholar
  26. 26.
    N. Wu, Q. Wang, Int. J. Eng. Sci. 49, 253 (2011)CrossRefGoogle Scholar
  27. 27.
    Y.F. Xu, W.D. Zhu, J. Liu, Y.M. Shao, J. Sound Vib. 333, 6273 (2014)CrossRefGoogle Scholar
  28. 28.
    M.M. Alamdari, J. Li, B. Samali, Arch. Civil Mech. Eng. 15, 698 (2015)CrossRefGoogle Scholar
  29. 29.
    S. Goswami, P. Bhattacharya, Int. Res. J. Eng. Technol. 2(3), 2060 (2015)Google Scholar
  30. 30.
    M.M.R. Taha, A. Noureldin, J.L. Lucero, T.J. Baca, Struct. Health Monit. 5(3), 267 (2006)CrossRefGoogle Scholar
  31. 31.
    V. Sowjanya, G. SasibhushanaRao, A. Sarvani, Proc. Comput. Sci. 85, 669 (2016)CrossRefGoogle Scholar
  32. 32.
    A. Azzalini, M. Farge, K. Schenider, Appl. Comput. Harmon Anal 18, 177 (2005)MathSciNetCrossRefGoogle Scholar
  33. 33.
    X. Zhang, N. Feng, Y. Wang, Y. Shen, J. Sound Vib. 339, 419 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • R. Janeliukstis
    • 1
    Email author
  • S. Rucevskis
    • 1
  • M. A. Sumbatyan
    • 2
  • A. Chate
    • 1
  1. 1.Riga Technical UniversityRigaLatvia
  2. 2.I.I. Vorovich Institute of Mathematics Mechanics and Computer SciencesSouthern Federal UniversityRostov-on-DonRussia

Personalised recommendations