Advertisement

Modeling of the Contact Interaction Between Steel Pipe and Composite Bandage

  • I. LvovEmail author
  • D. A. Beschetnikov
Chapter
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

The possible contact interaction schemes for steel cylindrical shell and composite bandage fitted on it are considered. For each contact interaction scheme the mathematical model is developed. Possibility of implementation of different contact interaction scheme is numerically researched. It is shown that contact without separation is possible for definite thickness of the bandage. The results are present in form of plots.

Keywords

Cylindrical shell Composite bandage Contact problem Timoshenko-type shells theory 

References

  1. 1.
    V.I. Mossakovskiy, V.S. Gudramovich, E.M. Makeev, Contact Problem for the Theory of Shells and Rods (Mashinostroenie, Moscow, 1978), p. 248 (in Russian)Google Scholar
  2. 2.
    V.V. Novogilov, The Linear Theory of Thin Shells (Politechnika, Lvov, 1991), p. 656 (in Russian)Google Scholar
  3. 3.
    S.P. Timoshenko, S. Voynarovskiy-Kriger, in Plates and shells (Nauka, Moscow, 1966), p. 636 (in Russian)Google Scholar
  4. 4.
    E. Ventsel, T. Krauthammer, Thin Plates and Shells: Theory, Analysis and Applications (Marcel Dekker, New York, 2001), p. 651Google Scholar
  5. 5.
    K.Z. Galimov, U.P. Artyuhin, S.N. Karasev, The Theory of Shells with a Glance of the Transverse Shear. (Kazan University Press, Kazan, 1977), p. 211 (in Russian)Google Scholar
  6. 6.
    B.L. Peleh, The Theory of Shells with Finite Shear Stiffness. Kiev Naukova Dumka 246 (1973) (in Russian)Google Scholar
  7. 7.
    S.A. Kabriz, E.N. Michailovsky, P.E. Tovstic, K.F. Chernih, V.A. Shamina, General Nonlinear Theory of Thin Shells (St. Petersburg University Press, St. Petersburg, 2002), p. 388 (in Russian)Google Scholar
  8. 8.
    M.V. Bloh, About model selection in contact problem of thin-walled bodies. Appl. Mech. XIII(5), 34 (1977)Google Scholar
  9. 9.
    U.P. Artyuhin, S.M. Karimov, Contact problem for cylindrical punch with a cylindrical shell. Invest. Theory Plates Shells 23, 21 (1972). (in Russian)Google Scholar
  10. 10.
    U.P. Artyuhin, S.N. Karasev, Action rigid stamp on the shallow spherical shell, and the plate. Invest. Theory Plates Shells 9, 211 (1972). (in Russian)Google Scholar
  11. 11.
    U.P. Artyuhin, S.N. Karasev, Some contact problem in the theory of thin plates. Invest. Theory Plates Shells 10, 159 (1973). (in Russian)Google Scholar
  12. 12.
    E.I. Grigolyuk, V.M. Tolkachev, Axisymmetric contact problem of cylindrical and spherical shells. Invest. Theory Plates Shells 22, 3 (1990). (in Russian)Google Scholar
  13. 13.
    F.M. Detinko, V.M. Fastovsky, About bandage installation on cylindrical shell. Appl. Mech. 2(2), 124 (1975)Google Scholar
  14. 14.
    S.N. Karasev, About one contact problem for the hollow cylinder under action of the plane strain. Invest. Theory Plates Shells 11, 185 (1975). (in Russian)Google Scholar
  15. 15.
    S.N. Karasev, U.P. Artyuhin, Influence of transverse shear and crimping on contact pressure distribution. Invest. Theory Plates Shells 12, 68 (1976). (in Russian)Google Scholar
  16. 16.
    S.N. Karasev, U.P. Artyuhin, Contact interaction between plates and rigid bodies. Invest. Theory Plates Shells 11, 148 (1975). (in Russian)Google Scholar
  17. 17.
    G.I. Lvov, A.N. Tkachuk, About influence of kinematic hypothesizes on nature of a contact interaction between cylindrical shell and bandage. Vestnik NTU KhPI 32, 98 (2006). (in Russian)Google Scholar
  18. 18.
    S.A. Ambartsumyan, in General Theory of Anisotropic Shells (Nauka, Moscow, 1974), p. 446 (in Russian)Google Scholar
  19. 19.
    A.N. Guz, Mechanics of composite materials and structure elements. Kiev Naukova Dumka 1, 267 (1982). (in Russian)Google Scholar
  20. 20.
    I.J. Amiro, V.A. Zaruckij, A.N. Guz, Methods of shells calculation: theory of ribbed shells. Kiev Naukova Dumka 2, 267 (1980). (in Russian)Google Scholar
  21. 21.
    J.M. Grigorenko, A.T. Vasilenko, A.N. Guz, Methods of shells calculation: theory of shells with variable stiffness. Kiev Naukova Dumka 4, 543 (1981). (in Russian)Google Scholar
  22. 22.
    S. Vereshaka, V. Daniltsev, D. Gigiliy, Strength calculation of fiber-glass plastic pipes in the area of flange connection. Mech, Eng. 12, 9 (2013)Google Scholar
  23. 23.
    B.L. Peleh, N.A. Sukchorolsky, Contact problems of the theory of elastic anisotropic shells. Kiev Naukova Dumka 216 (1980) (in Russian)Google Scholar
  24. 24.
    H. Altenbach, D.A. Beschetnikov, G.I. Lvov, K. Naumenko, V.G. Sukiasov, Kontaktwechselwirkung einer Rohrleitung mit der Reparaturbandage aus einem Kompositwerkstoff. Forschungim Ingenieurwesen 78, 59 (2014)Google Scholar
  25. 25.
    E. Barkanov, D. Beschetnikov, G. Lvov, Effect of technological tensioning on the efficiency of reinforcement of pipelines with composite bands. Mech. Compos. Mater. 50(6), 725 (2015)CrossRefGoogle Scholar
  26. 26.
    D.A. Beschetnikov, G.I. Lvov, Optimal design of preload under installing composite bandages on pipelines. In: NDT Days 2014. Proceedings of the XXIX International Conference, Sozopol, Bulgaria, p. 545 (2014)Google Scholar
  27. 27.
    B.V. Kopey, A.V. Maksymuk, N.N. Shcherbyna, Analysis of contact stresses in structural joints of composite shell with steel banding. Mech. Compos. Mater. 36(1), 67 (2000)CrossRefGoogle Scholar
  28. 28.
    O.V. Maksymuk, N.M. Shcherbyna, Contact interaction of cylindrical shells of different lengths. J. Math. Sci. 178(4), 455 (2011)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.National Technical University, Kharkiv Polytechnical InstituteKharkivUkraine

Personalised recommendations