Characterization of Elastic Properties of Metals and Composites by Laser-Induced Ultrasound

  • V. V. KozhushkoEmail author
  • V. P. Sergienko
  • Y. N. Mirchev
  • A. R. Alexiev
Part of the Engineering Materials book series (ENG.MAT.)


The development of new materials and composites with desired mechanical properties requires methods for evaluation of their elastic moduli. The direct measurements of the shear and longitudinal ultrasonic pulse are the simplest approach for solution of these tasks. Among the drawback of the traditional ultrasonic methods are narrow bandwidth and necessity of the relatively large volume of the material for testing. Laser excitation of ultrasound is based on optoacoustic conversion that induces bulk pulses of about tens nanosecond duration and can be applied for time-resolved measurements of velocities. The paper considers several experimental arrangements, which combine laser excitation of probe ultrasonic pulses and their detection for measuring the velocities of longitudinal and shear pulses. The features of detection in single crystal and polycrystalline nickel as well as steel specimens are discussed.


Laser-induced Ultrasound Scattering Elastic moduli Non-destructive testing Optoacoustics 


  1. 1.
    H. Kolsky, Stress Waves in Solids (Dover Publications, 2003)Google Scholar
  2. 2.
    M. Hirao, H. Ogi. EMATs for Science and Industry: Noncontacting Ultrasonic Measurements (Springer, 2003)Google Scholar
  3. 3.
    V.Ė. Gusev, A.A. Karabutov, Laser Optoacoustics (American Institute of Physics, New York, 1993)Google Scholar
  4. 4.
    C.B. Scruby, L.E. Drain, Laser Ultrasonics: Techniques and Applications (Taylor & Francis, 1990)Google Scholar
  5. 5.
    V.V. Kozhushko, G. Paltauf, H. Krenn, S. Scheriau, R. Pippan, J. Appl. Phys. 107, 94905 (2010)CrossRefGoogle Scholar
  6. 6.
    I.M. Pelivanov, D.S. Kopylova, N.B. Podymova, A.A. Karabutov, J. Appl. Phys. 106, 1 (2009)CrossRefGoogle Scholar
  7. 7.
    A.A. Karabutov, N.B. Podymova, E.B. Cherepetskaya, J. Appl. Mech. Tech. Phys. 54, 500 (2013)CrossRefGoogle Scholar
  8. 8.
    F.E. Stanke, G.S. Kino, J. Acoust. Soc. Am. 75, 665 (1984)CrossRefGoogle Scholar
  9. 9.
    Tourin A., Derode A., Fink M., in 1999 IEEE Ultrason. Symp.Proceedings. International Symposium (Cat. No. 99CH37027) 1, 711 (2000)Google Scholar
  10. 10.
    V.V. Kozhushko, G. Paltauf, H. Krenn, Acoust. Phys. 59, 250 (2013)CrossRefGoogle Scholar
  11. 11.
    J. Kim, K.-Y. Jhang, Int. J. Precis. Eng. Manuf. 16, 905 (2015)CrossRefGoogle Scholar
  12. 12.
    D.H. Hurley, S.J. Reese, F. Farzbod, J. Appl. Phys. 111(5), 053527 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • V. V. Kozhushko
    • 1
    Email author
  • V. P. Sergienko
    • 1
  • Y. N. Mirchev
    • 2
  • A. R. Alexiev
    • 2
  1. 1.V.A. Belyi Metal Polymer Research Institute of National Academy of Sciences of BelarusGomelBelarus
  2. 2.Institute of Mechanics of Bulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations