Techniques for Non-destructive Material Properties Characterisation

  • Evgeny N. BarkanovEmail author
  • M. Wesolowski
  • P. Akishin
  • M. Mihovski
Part of the Engineering Materials book series (ENG.MAT.)


Universal non-destructive techniques, adapted or developed for an effective and accurate characterisation of mechanical properties of composite materials, used in the advanced repair systems of pipelines with volumetric surface defects, are presented. There is static approach using three-points-bending tests and two dynamic methods: impulse excitation and inverse technique based on low-frequency vibrations. An experimental evaluation of the elastic material properties of laminated composites has allowed to validate the examined non-destructive techniques, to demonstrate their simplicity and reliability as well as to define their advantages and limitations.


Non-destructive characterisation Three-points-bending test Impulse excitation method Inverse technique Vibration test Laminated composites Elastic material properties 


  1. 1.
    R.F.S. Hearmon, Introduction to Applied Anisotropic Elasticity (Oxford University Press, Oxford, 1961)Google Scholar
  2. 2.
    B. Gommers, I. Verpoest, P. Van Houtte, J. Compos. Mater. 32(4), 310 (1998)CrossRefGoogle Scholar
  3. 3.
    L. Filipczynski, Z. Pawlowski, J. Wehr, Ultrasonic Methods of Testing Materials (Butterworths, London, 1966)Google Scholar
  4. 4.
    Y. Okabe, N. Takeda, M. Sekiguchi, J. Compos. Mater. 33(18), 1743 (1999)CrossRefGoogle Scholar
  5. 5.
    S. Mistou, M. Karama, J. Compos. Mater. 34(20), 1696 (2000)CrossRefGoogle Scholar
  6. 6.
    P.S. Frederiksen, J. Compos. Mater. 31, 360 (1997)CrossRefGoogle Scholar
  7. 7.
    A.L. Araujo, C.M. Mota Soares, M.J. Moreira de Freitas, P. Pedersen, J. Herskovits, Compos. Struct. 50, 363 (2000)CrossRefGoogle Scholar
  8. 8.
    J. Auzins, A. Chate, R. Rikards, E. Skukis, ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik 95(10), 1012 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    E. Barkanov, E. Skukis, B. Petitjean, J. Sound Vib. 327, 402 (2009)CrossRefGoogle Scholar
  10. 10.
    ASTM Standard D790—07e1, Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating MaterialsGoogle Scholar
  11. 11.
    S.P. Timoshenko, J.M. Gere, Mechanics of Materials (Van Nostrand Reinhold Company, New York, 1972)Google Scholar
  12. 12.
    EN ISO 14125:2001, Fibre-Reinforced Plastic Composites—Determination of Flexural PropertiesGoogle Scholar
  13. 13.
    ASTM Standard E 1876—07, Standard Test Method for Dynamic Young’s Modulus, Shear Modulus and Poisson’s Ratio by Impulse Excitation of VibrationGoogle Scholar
  14. 14.
    G. Pickett, Proc. ASTM 45, 846 (1945)Google Scholar
  15. 15.
    R. Rikards, H. Abramovich, T. Green, J. Auzins, A. Chate, Mech. Adv. Mater. Struct. 10(4), 335 (2003)CrossRefGoogle Scholar
  16. 16.
    A. Janushevskis, T. Akinfiev, J. Auzins, A. Boyko, Proc. Estonian Acad. Sci. Eng. 10(4), 236 (2004)Google Scholar
  17. 17.
    E. Barkanov, M. Wesolowski, W. Hufenbach, M. Dannemann, Comput. Struct. 146, 152 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Evgeny N. Barkanov
    • 1
    Email author
  • M. Wesolowski
    • 1
  • P. Akishin
    • 1
  • M. Mihovski
    • 2
  1. 1.Riga Technical UniversityRigaLatvia
  2. 2.Institute of Mechanics of Bulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations