Advertisement

Review on Materials for Composite Repair Systems

  • V. P. SergienkoEmail author
  • S. N. Bukharov
  • E. Kudina
  • C. M. Dusescu
  • I. Ramadan
Chapter
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

The given chapter presents a review of the materials, presently employed within the composite repair systems (based on reinforcing wraps/sleeves made of polymeric materials), and intended for the areas with volumetric surface defects (also named local metal loss defects) of the transmission pipelines for the transportation of hydrocarbons (petroleum, liquid petroleum products, natural gas, liquefied petroleum or natural gas) or other fluids (water, ammonia, etc.). The categories of materials investigated are polymeric fillers (used to fill the volumetric surface defects and to reconstruct the external configuration of the pipe before repairing it), fibre reinforced composites (the main component of the repair system ensuring its mechanical strength), adhesive materials (used to bind the successive layers of the reinforced composite wrap).

Keywords

Transmission pipelines Composite repair system (Polymeric) composite material Filler (Reinforcing) fibres Adhesive 

References

  1. 1.
    Wrap Master Inc., Perma Wrap Instalation Manual. http://www.wrapmaster.us/
  2. 2.
    M.V. Kuznetsov, V.F. Novoselov, P.I. Tugunov, V.F. Kotov, Anti-Corrosion Protection of Pipelines and Reservoirs (University Textbook, Moscow, Nedra, 1992). (in Russian)Google Scholar
  3. 3.
    L.P. Skugorova, Materials for the Construction of Gas-Oil Pipelines and Depositories, 3d revised edition (University Textbook, Moscow, Neft i Gas, 1996), p. 350 (in Russian)Google Scholar
  4. 4.
    Ya.A. Serednitski, O.F. Itkin, Materials for en-route and basic insulation and oil-gas pipelines. Neft i Gaz Prom. 5, 48 (1999) (in Russian)Google Scholar
  5. 5.
    J.G. Dickerson, Usage of melted epoxy resins for pipeline protection. FBE evolves to meet industry need for pipe line protection. Pipe Line and Gas Ind. 3, 67 (2001)Google Scholar
  6. 6.
    Patent No. 2008118394, Russia (2008) (in Russian)Google Scholar
  7. 7.
    Patent No. 2007125125, Russia (2007) (in Russian)Google Scholar
  8. 8.
    Patent No. 2258725, Russia (2003) (in Russian)Google Scholar
  9. 9.
    Instruction for the repair of damaged pipes of main pipelines using polymer composite BCH 39-1.10-001-99, OAO “Gasprom”, vved. (2000) (in Russian)Google Scholar
  10. 10.
    Patent No. 2251047, Russia (2004) (in Russian)Google Scholar
  11. 11.
    New and traditional epoxy materials. Epoxy Compounds “Smel”. Moscow, EPITAL (2013). http://www.epital.ru/tube/smel.html (in Russian)
  12. 12.
    Patent No. 5300336, USA (1994)Google Scholar
  13. 13.
    Patent No. 2184132, Russia (2002) (in Russian)Google Scholar
  14. 14.
    Industrial 4(1), (1986)Google Scholar
  15. 15.
    V.I. Mahnenko, E.A. Velikoivanenko, A.S. Milenin et al., Admissible pressure of fillers for hermetical sleeves used for the repair of main pipelines. Avtom. Svarka 8, 25 (2011). (in Russian)Google Scholar
  16. 16.
    Polyurethane coating developed for corrosion protection. Pipeline and Gas J. 3, 12 (1995)Google Scholar
  17. 17.
    Epoxy-urethane insulation for pipelines. New products and literature. Pipeline and Gas J. 5, 14 (1992)Google Scholar
  18. 18.
    Patent No. 2184751, Russia (2002) (in Russian)Google Scholar
  19. 19.
    Serviuap’s pipeline protection system. Water and Waste Treat (Or. Brit.) 5, 46 (2000)Google Scholar
  20. 20.
    Composite Materials Handbook. Polymer Matrix Composites Materials Usage, Design, and Analysis, vol. 3 (Department of Defense Handbook, U.S.A. 2002)Google Scholar
  21. 21.
    D.S. Lesmana, Long Term Durability of Composite Sleeve Repair and its Application as a Permanent Pipeline Repair in Indonesia, Petromin-Pipeliner, January–March (2013). http://www.pm-pipeliner.safan.com
  22. 22.
    S.G. Niziev, Protecting pipes from corrosion using modern insulation coatings factory and field application. Territory Neftegaz 6, 24 (2004). (in Russian)Google Scholar
  23. 23.
    A.P. Petrova, V.V. Kulikov, Properties of adhesive materials used in the repair and reconstruction works. Adhesives. Sealants. Technol. 8, 2 (2008). (In Russian)Google Scholar
  24. 24.
    A.L. Labutin, Anti-corrosion and Sealing Materials Based on Synthetic Rubbers, vol 257 (Leningrad, Chemistry, 1982) (in Russian)Google Scholar
  25. 25.
    A.E. Zaikin, S.Yu. Sofina, O.V. Stoyanov, Polymer adhesive tape for anticorrosive isolation of pipelines. Bull Kazan Univ Technol. 6, 98 (2010) (in Russian)Google Scholar
  26. 26.
    A. Pizzi, K.L. Mittal, Handbook of Adhesive Technology, 2nd edn. (Marcel Dekker Inc. 2003)Google Scholar
  27. 27.
    D.W. Aubrey, M. Sherriff, J. Appl. Polym. Sci. 18, 2597 (1980)Google Scholar
  28. 28.
    I. Khan, B.T. Poh, J. Polym. Environ. 19, 793 (2011)CrossRefGoogle Scholar
  29. 29.
    I. Khan, B.T. Poh, Mater. Des. 32, 2513 (2011)CrossRefGoogle Scholar
  30. 30.
    J. Sang, S. Aisawa, K. Miura, H. Hirahara, O. Jan, P. Jozef, M. Pavol, Int. J. Adhes. Adhes. 72, 70 (2017)CrossRefGoogle Scholar
  31. 31.
    L. Picard, P. Phalip, E. Fleury, F. Ganachaud, Prog. Org. Coat. 87, 250 (2015)CrossRefGoogle Scholar
  32. 32.
    L. Picard, P. Phalip, E. Fleury, F. Ganachaud, Prog. Org. Coat. 80, 120 (2015)CrossRefGoogle Scholar
  33. 33.
    L. Picard, P. Phalip, E. Fleury, F. Ganachaud, Prog. Org. Coat. 87, 258 (2015)CrossRefGoogle Scholar
  34. 34.
    B.T. Poh, J. Lamaming, G.S. Tay, J Coatings, Article ID 369352 (2014)Google Scholar
  35. 35.
    A. Beiersdorf, Adhesive tape and its use. Germany Patent Proposal No. 19840361, 09 Mar 2000Google Scholar
  36. 36.
    M.A. Ahmed, U.F. Kandil, N.O. Shaker, A.I. Hashem, J. Radiat. Res. Appl. Sci. 8, 549 (2015)CrossRefGoogle Scholar
  37. 37.
    H. Yahyaie, M. Ebrahimi, H.V. Tahami, E.R. Maf, Prog. Org. Coat. 76, 286 (2013)CrossRefGoogle Scholar
  38. 38.
    K. Shibata, Y. Tanaka, Pressure-sensitive rubber adhesive and pressure-sensitive adhesive sheet made using the same. USA Patent No. 6518355, 11 Feb 2003Google Scholar
  39. 39.
    J. Lasprilla-Botero, M. Álvarez-Láinez, D.A. Acosta, Int. J. Adhes. Adhes. 3, 58 (2017)CrossRefGoogle Scholar
  40. 40.
    L.M. Paim, J.M.L. dos Reis, H.S. da Costa Mattos, Analysis of a glass fibre reinforced polyurethane composite repair system for corroded pipelines at elevated temperatures. in IV International Symposium on Solid Mechanics. MecSol, Porto Alegre, Brazil (2013)Google Scholar
  41. 41.
    B.S. Chiou, P.E. Shoen, J. Appl. Polym. Sci. 83, 212 (2002)CrossRefGoogle Scholar
  42. 42.
    J. John, M. Bhattacharya, R.B. Turner, J. Appl. Polym. Sci. 86, 3097 (2002)CrossRefGoogle Scholar
  43. 43.
    S. Desai, I.M. Thakore, B.D. Sarawade, S. Devi, Eur. Polym. J. 36, 711 (2000)CrossRefGoogle Scholar
  44. 44.
    Y.H. Han, A. Taylor, M.D. Mantle, K.M. Knowles, J. Non-Cryst. Solids 353, 313 (2007)CrossRefGoogle Scholar
  45. 45.
    B.K. Kim, J.S. Yang, S.M. Yoo, J.S. Lee, Colloid Polym. Sci. 281, 461 (2003)CrossRefGoogle Scholar
  46. 46.
    H. Sardon, L. Irusta, M.J. Fernández-Berridi, J. Luna, M. Lansalot, E. BourgeatLami, J. Appl. Polym. Sci. 120, 2054 (2011)CrossRefGoogle Scholar
  47. 47.
    H. Sardon, L. Irusta, A. González, M.J. Fernández-Berridi, Prog. Org. Coat. 76, 1230 (2013)CrossRefGoogle Scholar
  48. 48.
    I.A. Sharova, Domestic and foreign experience in the development of epoxy adhesives of cold-setting. Electron. Scientific J. Proc. VIAM 7 (2014)Google Scholar
  49. 49.
  50. 50.
    S.N. Gladkikh, Adhesives. Sealants. Technol. 8, 6 (2007). (in Russian)Google Scholar
  51. 51.
    S.N. Gladkikh, L.N. Kuznetsova, Adhesives. Sealants. Technol. 1, 17 (2004). (in Russian)Google Scholar
  52. 52.
    S.N. Gladkikh, V.M. Kolobkova, E.N. Basharina, Adhesives. Sealants. Technol. 7, 813 (2006). (in Russian)Google Scholar
  53. 53.
    V.S. Smirnov, N.N. Parakhina, A.F. Murokh, Z.S. Khamidulova, V.I. Milov, D.A. Aronovich, I.P. Rogacheva, A.P. Sineokov, E.F. Knyazev, The use of adhesives in the repair of operating gas pipelines. Adhesives. Sealants. Technol. 9, 22 (2009). (in Russian)Google Scholar
  54. 54.
    O.M. Ivantsov, B.I. Miroshnichenko, L.A. Paley, Pipeline Repair Technology. http://www.eprussia.ru (in Russian)
  55. 55.
    P. Kelly, Solid Mechanics, Part I, Section 6.2. Anisotropic Elasticity. http://homepages.engineering.auckland.ac.nz/pkelo15/SolidMechanicsBooks/
  56. 56.
    C.A. Felippa, E. Onate, Stress, strain and energy splitting for anisotropic elastic solids under volumetric constraints. Report CU-CAS-02-09, Centre for Aerospace Structures (2002)Google Scholar
  57. 57.
    Ch. Decolon, Analysis of Composite Structures (Elsevier, 2002)Google Scholar
  58. 58.
    ASME PCC-2, Repair of Pressure Equipment and Piping. Part 4, Non-metallic and Bonded Repairs (2015)Google Scholar
  59. 59.
    H. Andersson, D. Vysochinskiy, Reinforcement of Existing Steel Pipes Using Composite Materials—High Temperature Applications, Master’s Thesis, CHALMERS University of Technology, Göteborg, Sweden (2008)Google Scholar
  60. 60.
    R.L.I. Hausrath, A.V. Longobardo, High strength glass fibres and markets, in Fibreglass and Glass Technology: Energy-Friendly Compositions and Applications, ed. by F.T. Wallenberg, P.A. Bingham (Springer, New York, 2011)Google Scholar
  61. 61.
    DD ISO/TS 24817, Petroleum, Petrochemical and Natural Gas Industries—Composite Repairs for Pipework—Qualification and Design, Installation, Testing and Inspection (2006)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • V. P. Sergienko
    • 1
    Email author
  • S. N. Bukharov
    • 1
  • E. Kudina
    • 1
  • C. M. Dusescu
    • 2
  • I. Ramadan
    • 2
  1. 1.V.A. Belyi Metal Polymer Research Institute of National Academy of Sciences of BelarusGomelBelarus
  2. 2.Petroleum-Gas University of PloiestiPloieştiRomania

Personalised recommendations