Determinants of Facebook Adoption and Use Within the Workspace in Catholic University of Central Africa

  • Jean-Robert Kamdjoug Kala
  • Samuel Fosso Wamba
  • Steve Marius Kemayou YombiaEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 571)


Given new and innovative services brought about by Information and communication technologies (ICTs) including social media, they have become vital tools and channels for both individual users and organizations. Thanks to social media, people and institutions are being given the possibility to automate and improve the performance of their activities, to take advantage of rapid electronic diffusion processes to guarantee a better information sharing between users, inter alia. This study focuses on the Facebook social media network and attempts to identify and analyze the factors that influence the usage of this tool in the Cameroonian professional environment. To test our proposed model, data were collected from 142 social media users from Cameroonian universities. Findings have shown that the perception of connectivity and the attitude toward using Facebook have significant influence on the intention to use Facebook at the workplace.


Social media Perceived connectivity Use and adoption  


  1. 1.
    Berger, R., Micheau, F.: Observatoire Des Réseaux Sociaux 2013 (2013)Google Scholar
  2. 2.
    Shami, N.S., Nichols, J., Chen, J.: Social media participation and performance at work: a longitudinal study. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, New York, NY, USA, pp. 115–118 (2014)Google Scholar
  3. 3.
    Mangal, V., Mandelli, A., Karmarkar, U., Rocca, A.L.: The UCLA Anderson Business and Information Technologies (BIT) Project: A Global Study of Technology and Business Practice (2016). World Scientific (2016)Google Scholar
  4. 4.
    Leonardi, P.M., Huysman, M., Steinfield, C.: Enterprise social media: definition, history, and prospects for the study of social technologies in organizations. J. Comput. Mediat. Commun. 19(1), 1–19 (2013)CrossRefGoogle Scholar
  5. 5.
    Fisher, K.E., Russell-Sauvé, C., Becker, S., Crandall, M.D., Blakewood, R., Kinney, B.: Opportunity for All: How Library Policies and Practices Impact Public Internet Access (2011)Google Scholar
  6. 6.
    Culnan, M.J., McHugh, P.J., Zubillaga, J.I.: How large U.S. companies can use twitter and other social media to gain business value. ResearchGate 9(4), 243–259 (2010)Google Scholar
  7. 7.
    Davis, F.D.: Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 13(3), 319–340 (1989)CrossRefGoogle Scholar
  8. 8.
    Rogers, O.: Diffusion of innovations. Rev. Fr. Sociol. 5(2), 216–218 (1964)Google Scholar
  9. 9.
    Vijayasarathy, L.R.: Predicting consumer intentions to use online shopping: the case for an augmented technology acceptance model. Inf. Manage. 41, 747–762 (2004)CrossRefGoogle Scholar
  10. 10.
    Rogers, E.: Diffusion of Innovation 4th edn. (1995)Google Scholar
  11. 11.
    Agarwal, R., Prasad, J.: Are individual differences germane to the acceptance of new information technologies? Decis. Sci. 30, 361–391 (1999)CrossRefGoogle Scholar
  12. 12.
    Bruner, G., Kumar, A.: Explaining consumer acceptance of handheld internet devices. J. Bus. Res. no. 58, 553–558 (2005)CrossRefGoogle Scholar
  13. 13.
    Luo, X., Gurung, A., Shim, J.P.: Understanding the determinants of user acceptance of enterprise instant messaging: an empirical study. J. Organ. Comput. Electron. Commer. 20, 155–181 (2010)Google Scholar
  14. 14.
    Sun, H., Zhang, P.: An exploration of affective factors and their factors and their roles in user technology acceptance: mediation and causality. J. Am. Soc. Inf. Sci. Technol. 59, 1252–1263 (2008)CrossRefGoogle Scholar
  15. 15.
    Couvreur, A., Lehuede, F.: Essai de Comparaison de Méthodes Quantitatives et Qualitatives à Partir d’un Exemple: le Passage à l’Euro Vécu par les Consommateurs. Cent. Rech. Pour L’Etude L’Observation Cond. Vie. (2002)Google Scholar
  16. 16.
    Camille, G., Gaston, G.: Les Théories Sociales Cognitives: Guide pour la Mesure des Variables et le Développement de Questionnaire. Université Laval, Laval (1999)Google Scholar
  17. 17.
    Nunnaly, J.C., Bernstein, I.H.: Psychometric Theory, 3th edn. McGraw-Hil (1994)Google Scholar
  18. 18.
    Hair, J., Hult, T., Ringle, C., Sarstedt, M.: A Primer on Partial Least Squares Structural Equation Modeling (pls-sem) (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jean-Robert Kamdjoug Kala
    • 1
  • Samuel Fosso Wamba
    • 2
  • Steve Marius Kemayou Yombia
    • 1
    Email author
  1. 1.Faculty of Social Science and ManagementCatholic University of Central AfricaYaoundeCameroun
  2. 2.Department of Information ManagementToulouse Business SchoolToulouseFrance

Personalised recommendations