Building a Bayesian Network for Object Oriented Programming with Experts’ Knowledge

  • Alan Ramirez-NoriegaEmail author
  • Reyes Juárez-Ramírez
  • Samantha Jiménez
  • Yobani Martínez-Ramírez
  • José Armenta
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 569)


Bayesian Networks have been related to education for several years due to the advantages that this technique offers. Building a Bayesian Network (BN) in the educational domain is laborious. The objective of this study is to define a methodology to develop BNs to be implemented them in an Intelligent Tutoring Systems based on ontologies and experts’ knowledge. Also, establish a method for building automatically BN qualitative part. The main contributions of our work are the methodology to build BNs based on experts’ knowledge, the formalization of ontologies, and the process of construct BN qualitative part. The resulted BNs are useful to infer and diagnose students’ knowledge. This inference will be helpful to decide what are concepts need to be reinforce.


Bayesian network Object orientation Ontology Methodology Intelligent Tutoring System 


  1. 1.
    Almashaykhi, A.M.O.: Domain ontology for programming languages. J. Comput. Model. 2(4), 75–91 (2012)Google Scholar
  2. 2.
    Cataldi, Z., Lage, F.J.: Modelado del estudiante en sistemas tutores inteligentes. Revista Iberoamericana de Tecnologia en Educación y Educación en Tecnología 5, 29–38 (2010)Google Scholar
  3. 3.
    Conati, C., Gertner, A., Vanlehn, K.: Using Bayesian networks to manage uncertainty in student modeling. User Model. User-Adap. Inter. 12(4), 371–417 (2002)CrossRefzbMATHGoogle Scholar
  4. 4.
    Conejo, R., Millán, E., Pérez, J., Trella, M.: Modelado del alumno: un enfoque bayesiano. Revista Iberoamericana de Inteligencia Artificial 12, 50–58 (2001)Google Scholar
  5. 5.
    Ding, Z., Peng, Y.: A probabilistic extension to ontology language OWL. In: Proceedings of the 37th Annual Hawaii International Conference on System Sciences, pp. 1–10 (2004)Google Scholar
  6. 6.
    Fernández-López, M., Gómez-Pérez, A., Juristo, N.: Methontology: from ontological art towards ontological engineering. Assessment SS-97-06, pp. 33–40 (1997)Google Scholar
  7. 7.
    Khodeir, N., Wanas, N., Hegazy, N., Darwish, N.: Bayesian based student knowledge modeling in intelligent tutoring systems. In: Proceedings of the 2012 6th IEEE International Conference on E-Learning in Industrial Electronics, ICELIE 2012, pp. 12–17 (2012)Google Scholar
  8. 8.
    Madsen, A.L., Lohse, N.: Diagnostic Models Using Expert Knowledge (2015)Google Scholar
  9. 9.
    Mendes, E.: Knowledge representation using Bayesian networks — a case study in Web effort estimation. In: Proceedings of the World Congress on Information and Communication Technologies, pp. 612–617 (2011)Google Scholar
  10. 10.
    Millán, E., Pérez-De-La-Cruz, J.L.: A Bayesian diagnostic algorithm for student modeling and its evaluation. User Model. User-Adap. Inter. 12, 281–330 (2002)CrossRefzbMATHGoogle Scholar
  11. 11.
    Millán, E., Descalço, L., Castillo, G., Oliveira, P., Diogo, S.: Using Bayesian networks to improve knowledge assessment. Comput. Educ. 60(1), 436–447 (2013)CrossRefGoogle Scholar
  12. 12.
    Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers Inc., San Mateo (1988)zbMATHGoogle Scholar
  13. 13.
    Ramírez-Noriega, A., Juárez-Ramírez, R., Huertas, C., Martínez-Ramírez, Y.: A methodology for building bayesian networks for knowledge representation in intelligent tutoring systems. In: Congreso Internacional de Investigación e Innovación en Ingeniería de Software 2015, San Luís Potosí, pp. 124–133 (2015)Google Scholar
  14. 14.
    Roche Beltrán, F.: Metodo para obtener conocimiento utilizando redes Bayesianas y procesos de aprendizaje con algoritmos evolutivos. Ph.D. thesis, Universidad de Sevilla (2002)Google Scholar
  15. 15.
    Santhi, R., Priya, B., Nandhini, J.: Review of intelligent tutoring systems using bayesian approach. arXiv preprint arXiv:1302.7081 (2013)
  16. 16.
    Shishehchi, S., Banihashem, S.Y.: Learning content recommendation for visual programming language based on ontology. J. Comput. Sci. 7(2), 188–196 (2011)CrossRefGoogle Scholar
  17. 17.
    Xiao-xuan, H., Hui, W., Shuo, W.: Using expert’s knowledge to build bayesian networks. In: 2007 International Conference on Computational Intelligence and Security Workshops (CISW 2007), pp. 220–223 (2007)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Alan Ramirez-Noriega
    • 1
    Email author
  • Reyes Juárez-Ramírez
    • 1
  • Samantha Jiménez
    • 1
  • Yobani Martínez-Ramírez
    • 2
  • José Armenta
    • 2
  1. 1.Universidad Autónoma de Baja CaliforniaTijuanaMexico
  2. 2.Universidad Autónoma de SinaloaLos MochisMexico

Personalised recommendations