Skip to main content

Sulfate Transport in Plants: A Personal Perspective

  • Conference paper
  • First Online:

Part of the book series: Proceedings of the International Plant Sulfur Workshop ((PIPSW))

Abstract

Early key research milestones for sulfate transport in plants include the first description of kinetics of sulfate uptake into plant roots (Leggett and Epstein, Plant Physiol 31:222–226, 1956), nutritionally regulated sulfate uptake into plants (Clarkson et al., J Exp Bot 34:1463–1483, 1983), and the first gene for a plant sulfate transporter (Smith et al., Proc Natl Acad Sci U S A 92:9373–9377, 1995a). Since then a well-described gene family encoding putative sulfate transporters has been characterized in multiple species, initially most notably in Arabidopsis but subsequently for a number of other models or important crops (examples: Brassica, wheat, rice, poplar and Medicago, see Buchner et al., Genome 47:526–534, 2004a; Buchner et al., Plant Physiol 136:3396–3408, 2004b; Buchner et al., Mol Plant 3:374–389, 2010; Kumar et al., Plant Signal Behav 10:e990843, 2015; Dürr et al., Plant Mol Biol 72:499–517, 2010; Gao et al., Planta 239:79–96, 2014). Regulation of expression has been well documented and this regulation is both a useful marker of sulfur-nutritional status and a model for the elucidation of control pathways. The complexity of the gene family in relation to functional, regulatory and spatial distribution indicates an apparent whole plant management system for sulfur, coordinated with growth and demand and interacting with nutrient availability. In addition to sulfate, there is direct involvement of this transporter family in the uptake and accumulation of both selenate and molybdate, with clear consequences for nutritional quality. Is the story now complete almost 60 years since the first transport description and 20 years since the first sulfate transporter gene isolation, and a plethora of research projects and publications? Do we know how sulfur is acquired and appropriately distributed within the plant? Do we know the critical signals that control these processes? Are we even sure that these processes are coordinated? This review documents research progress and assesses to what extent the key questions have been addressed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aravind L, Koonin EV (2000) The STAS domain – a link between anion transporters and antisigma-factor antagonists. Curr Biol 10:R53–R55

    Article  CAS  PubMed  Google Scholar 

  • Baxter I, Muthukumar B, Park HC, Buchner P, Lahner B, Danku J, Zhao K, Lee J, Hawkesford MJ, Guerinot ML, Salt DE (2008) Variation in molybdenum content across broadly distributed populations of Arabidopsis thaliana is controlled by a mitochondrial molybdenum transporter (MOT1). PLoS Genet 4(2):e1000004. doi:10.1371/journal.pgen.1000004

    Article  PubMed  PubMed Central  Google Scholar 

  • Bissig M, Hagenbuch B, Stieger B, Koller T, Meier P (1994) Functional expression cloning of the canalicular sulfate transport system of rat hepatocytes. J Biol Chem 269:3017–3021

    CAS  PubMed  Google Scholar 

  • Breton A, Surdin-Kerjan Y (1977) Sulfate uptake in Saccharomyces cerevisiae: biochemical and genetic study. J Bacteriol 132:224–232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buchner P, Prosser IM, Hawkesford MJ (2004a) Phylogeny and expression of paralogous and orthologous sulphate transporter genes in diploid and hexaploid wheats. Genome 47:526–534

    Article  CAS  PubMed  Google Scholar 

  • Buchner P, Stuiver CEE, Westerman S, Wirtz M, Hell R, Hawkesford MJ, De Kok LJ (2004b) Regulation of sulfate uptake and expression of sulfate transporter genes in Brassica oleracea as affected by atmospheric H2S and pedospheric sulfate nutrition. Plant Physiol 136:3396–3408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchner P, Parmar S, Kriegel A, Carpentier M, Hawkesford MJ (2010) The sulfate transporter family in wheat: tissue-specific gene expression in relation to nutrition. Mol Plant 3:374–389

    Article  CAS  PubMed  Google Scholar 

  • Cherest H, Davidian J-C, Thomas D, Benes V, Ansorge W, Surdin-Kerjan Y (1997) Molecular characterization of two high affinity sulfate transporters in Saccharomyces cerevisiae. Genetics 145:627–635

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clarkson D (1997) Foreword: Sulphate transport and its regulation: a personal view. In: Cram WJ, De Kok LJ, Stulen I, Brenhold C, Rennenberg H (eds) Proceedings of the 3rd workshop on sulphur metabolism in higher plants, Newcastle., Backhuys, Leiden, pp xi–xiii

    Google Scholar 

  • Clarkson DT, Smith FW, Vanden Berg PJ (1983) Regulation of sulphate transport in a tropical legume, Macroptilium atropurpureum, cv Siratro. J Exp Bot 34:1463–1483

    Article  CAS  Google Scholar 

  • Clarkson DT, Hawkesford MJ, Davidian J-C (1993) Membrane and long distance transport of sulfate. In: De Kok LJ, Stulen I, Rennenberg H, Brunold C, Rauser WE (eds) 2nd workshop on sulfur metabolism in higher plants, Garmisch. SPB Publishing, The Hague, pp 3–20

    Google Scholar 

  • Clarkson DT, Diogo E, Amancio S (1999) Uptake and assimilation of sulphate by sulphur deficient Zea mays cells: the role of O-acetyl-L-serine in the interaction between nitrogen and sulphur assimilatory pathways. Plant Physiol Biochem 37:283–290

    Article  CAS  Google Scholar 

  • Davidian JC, Hatzfeld Y, Cathal N, Tagmount A, Vidmar JJ (2000) Sulfate uptake and transport in plants. In Brunhold C, Rennenberg H, De Kok LJ, Stulen I, Davidian JC (eds) 4th workshop on sulfur nutrition and sulfur assimilation in higher plants, Wengen. Paul Haupt, Bern, pp 19–40

    Google Scholar 

  • Dürr J, Bücking H, Mult S, Wildhagen H, Palme K, Rennenberg H, Dittengou F, Herschbach C (2010) Seasonal and cell type specific expression of sulfate transporters in the phloem of Populus reveals tree specific characteristics for SO4 2− storage and mobilization. Plant Mol Biol 72:499–517

    Article  PubMed  Google Scholar 

  • Gao Y, Tian Q, Zhang WH (2014) Systemic regulation of sulfur homeostasis in Medicago truncatula. Planta 239:79–96

    Article  CAS  PubMed  Google Scholar 

  • Gasber A, Klaumann S, Trentmann O, Trampczynska A, Clemens S, Schneider S, Sauer N, Feifer I, Bittner F, Mendel RR, Neuhaus HE (2011) Identification of an Arabidopsis solute carrier critical for intracellular transport and inter-organ allocation of molybdate. Plant Biol 13:710–718

    Article  CAS  PubMed  Google Scholar 

  • Gorbunov D, Sturlese M, Nies F, Kluge M, Bellanda M, Battistutta R, Oliver D (2014) Molecular architecture and the structural basis for anion interaction in prestin and SLC26 transporters. Nat Commun 5:3622

    Article  PubMed  PubMed Central  Google Scholar 

  • Hästbacka J, de la Chapelle A, Mahtani MM, Clines G, Reeve-Daly MP, Daly M, Hamilton BA, Kusumi K, Trivedi B, Weaver A, Coloma A, Lovett M, Buckler A, Kaitila I, Lander ES (1994) The diastrophic dysplasia gene encodes a novel sulfate transporter: positional cloning by fine-structure linkage disequilibrium mapping. Cell 78:1073–1087

    Article  PubMed  Google Scholar 

  • Hawkesford MJ (2003) Transporter gene families in plants: the sulphate transporter gene family – redundancy or specialization? Physiol Plant 117:155–163

    Article  CAS  Google Scholar 

  • Hawkesford MJ (2012) Sulfate uptake and assimilation: whole plant regulation. In: De Kok LJ, Tausz M, Hawkesford MJ, Hoefgen R, McManus MT, Norton RM, Rennenberg H, Saito K, Schnug E, Tabe L (eds) Sulfur metabolism in plants, proceedings of the international plant sulfur workshop, Creswick. Springer, Dordrecht, pp 11–24

    Google Scholar 

  • Hawkesford MJ, Buchner P, Hopkins L, Howarth JR (2003) The plant transporter family: specialised functions and integration with whole plant nutrition. In: Davidian J-C, Grill D, De Kok LJ, Stulen I, Hawkesford MJ, Schnug E, Rennenberg H (eds) Sulfur transport and assimilation in plants: regulation, interaction and signaling workshop, Montpellier. Backhuys, Leiden, pp 1–10

    Google Scholar 

  • Hubberten HM, Klie S, Caldana C, Degenkolbe T, Willmitzer L, Hoefgen R (2012) Additional role of O-acetylserine as a sulfur status-independent regulator during plant growth. Plant J 70:666–677

    Article  CAS  PubMed  Google Scholar 

  • Hubberten H-M, Watanabe M, Bielecka M, Heyneke E, Aarabi F, Hoefgen R (2015) More than a substrate: the O-acetylserine responsive transcriptome. In: De Kok LJ, Hawkesford MJ, Rennenberg H, Saito K, Schnug E (eds) Molecular physiology and ecophysiology of sulfur, proceedings of the international plant sulfur workshop. Springer, Cham, pp 133–143

    Google Scholar 

  • Kataoka T, Hayashi N, Yamaya T, Takahashi H (2004a) Root-to-shoot transport of sulfate in Arabidopsis. Evidence for the role of SULTR3;5 as a component of low-affinity sulfate transport system in the root vasculature. Plant Physiol 136:4198–4204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kataoka T, Watanabe-Takahashi A, Hayashi N, Ohnishi M, Mimura T, Buchner P, Hawkesford MJ, Yamaya T, Takahashi H (2004b) Vacuolar sulfate transporters are essential determinants controlling internal distribution of sulfate in Arabidopsis. Plant Cell 16:2693–2704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ketter JS, Jarai G, Fu YH, Marzluf GAB (1991) Nucleotide-sequence, messenger-RNA stability, and DNA recognition elements of Cys-14, the structural gene for sulfate permease-II in Neurospora-crassa. Biochemistry 30:1780–1787

    Article  CAS  PubMed  Google Scholar 

  • Kouchi H, Hata S (1993) Isolation and characterization of novel nodulin cDNAs representing genes expressed at early stages of soybean nodule development. Mol Gen Genet 238:106–119

    CAS  PubMed  Google Scholar 

  • Kredich NM (1993) Gene regulation of sulfur assimilation. In: De Kok LJ, Stulen I, Rennenberg H, Brunold C, Rauser WE (eds) 2nd workshop on sulfur metabolism in higher plants, Garmisch. SPB Publishing, The Hague, pp 37–47

    Google Scholar 

  • Krusell L, Krause K, Ott T, Desbrosses G, Kramer U, Sato S, Nakamura Y, Tabata S, James EK, Sandal N, Stougaard J, Kawaguchi M, Miyamoto A, Suganuma N, Udvardi MK (2005) The sulfate transporter SST1 is crucial for symbiotic nitrogen fixation in Lotus japonicus root nodules. Plant Cell 17:1625–1636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Asif MH, Chakrabarty D, Tripathi RD, Dubey RS, Trivedi PK (2015) Comprehensive analysis of regulatory elements of the promotors of rice sulfate transporter gene family and functional characterization of OsSul1;1 promoter under different metal stress. Plant Signal Behav 10:e990843

    Article  PubMed  PubMed Central  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Lass B, Ullrich-Eberius CI (1984) Evidence for proton/sulfate cotransport and its kinetics in Lemna gibba G1. Planta 161:53–60

    Article  CAS  PubMed  Google Scholar 

  • Leggett JE, Epstein E (1956) Kinetics of sulphate absorption by barley roots. Plant Physiol 31:222–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loudet O, Saliba-Colombani V, Camilleri C, Calenge F, Gaudon V, Koprivova A, North KA, Kopriva S, Daniel-Vedele F (2007) Natural variation for sulfate content in Arabidopsis thaliana is highly controlled by APR2. Nat Genet 39:896–900

    Article  CAS  PubMed  Google Scholar 

  • Markovich D (2001) Physiological roles and regulation of mammalian sulfate transporters. Physiol Rev 81:1499–1533

    CAS  PubMed  Google Scholar 

  • Moore KL, Schroder M, Lombi E, Zhao FJ, McGrath SP, Hawkesford MJ, Shewry PR, Grovenor CRM (2010) NanoSIMS analysis of arsenic and selenium in cereal grain. New Phytol 185:434–445

    Article  CAS  PubMed  Google Scholar 

  • Ohta N, Galsworthy PR, Pardee AB (1971) Genetics of sulfate transport by Salmonella-typhimurium. J Bacteriol 105:1053–1062

    Google Scholar 

  • Price GD, Howitt SM (2014) Topology mapping to characterize cyanobacterial bicarbonate transporters: BicA (SulP/SLC26 family) and SbtA. Mol Membr Biol 31:177–182

    Article  CAS  PubMed  Google Scholar 

  • Price GD, Woodger FJ, Badger MR, Howitt SM, Tucker L (2004) Identification of a SulP-type bicarbonate transporter in marine cyanobacteria. Proc Natl Acad Sci U S A 101:18228–18233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rouached H, Berthomieu P, El Kassis E, Cathala N, Catherinot V, Labesse G, Davidian J-C, Fourcroy P (2005) Structural and functional analysis of the C-terminal STAS (sulfate transporter and anti-sigma antagonist) domain of the Arabidopsis thaliana sulfate transporter SULTR1.2. J Biol Chem 280:15976–15983

    Article  CAS  PubMed  Google Scholar 

  • Sandal NN, Marcker KA (1994) Similarities between a soybean nodulin, Neurospora crassa sulphate permease II and a putative human tumour suppressor. Trends Biochem Sci 19:19

    Article  CAS  PubMed  Google Scholar 

  • Schweinfest CW, Henderson KW, Suster S, Kondoh N, Papas TS (1993) Identification of a colon mucosa gene that is down-regulated in colon adenomas and adenocarcinomas. Proc Natl Acad Sci U S A 90:4166–4170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shibagaki N, Rose A, McDermott JP, Fujiwara T, Hayashi H, Yoneyama T, Davies JP (2002) Selenate-resistant mutants of Arabidopsis thaliana identify Sultr1;2, a sulfate transporter required for efficient transport of sulfate into roots. Plant J 29:475–486

    Article  CAS  PubMed  Google Scholar 

  • Shinmachi F, Buchner P, Stroud JL, Parmar S, Zhao FJ, McGrath SP, Hawkesford MJ (2010) Influence of sulfur deficiency on the expression of specific sulfate transporters and the distribution of sulfur, selenium and molybdenum in wheat. Plant Physiol 153:327–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silberg DG, Wang W, Moseley R, Traber PG (1995) The Down-regulated in adenoma gene (Dra) encodes an intestine-specific membrane sulfate transport protein. Gastroenterology 108:A325–A325

    Google Scholar 

  • Sirko A, Hryniewicz M, Hulanicka D, Bock A (1990) Sulfate and thiosulfate transport in Escherichia coli K-12 – nucleotide-sequence and expression of the cysTWAM gene-cluster. J Bacteriol 172:3351–3357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith FW, Ealing PM, Hawkesford MJ, Clarkson DT (1995a) Plant members of a family of sulfate transporters reveal functional subtypes. Proc Natl Acad Sci U S A 92:9373–9377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith FW, Hawkesford MJ, Prosser IM, Clarkson DT (1995b) Isolation of a cDNA from Saccharomyces cerevisiae that encodes a high-affinity sulfate transporter at the plasma-membrane. Mol Gen Genet 247:709–715

    Article  CAS  PubMed  Google Scholar 

  • Smith FW, Hawkesford MJ, Ealing PM, Clarkson DT, Vanden Berg PJ, Belcher AR, Warrilow AGS (1997) Regulation of expression of a cDNA from barley roots encoding a high affinity sulphate transporter. Plant J 1:875–884

    Article  Google Scholar 

  • Stroud JL, Zhao FJ, Buchner P, Shinmachi F, McGrath SP, Abecassis J, Hawkesford MJ, Shewry PR (2010) Impacts of sulphur nutrition on selenium and molybdenum concentrations in wheat grain. J Cereal Sci 52:111–113

    Article  CAS  Google Scholar 

  • Takahashi H, Sasakura N, Noji M, Saito K (1996) Isolation and characterization of a cDNA encoding a sulfate transporter from Arabidopsis thaliana. FEBS Lett 392:95–99

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Yamazaki M, Sasakura N, Watanabe A, Leustek T, De Almeida Engler J, Engler G, Van Montagu M, Saito K (1997) Regulation of sulfur assimilation in higher plants: a sulfate transporter induced in sulfate-starved roots plays a central role in Arabidopsis thaliana. Proc Natl Acad Sci U S A 94:11102–11107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi H, Asanuma W, Saito K (1999) Cloning of an Arabidopsis cDNA encoding a chloroplast localizing sulphate transporter isoform. J Exp Bot 50:1713–1714

    CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas D, Kuras L, Cherest H, Blaiseau PL, Surdin-Kerjan Y (1997) Regulation of gene expression in yeast sulphur metabolism. In: Cram WJ, De Kok LJ, Stulen I, Brenhold C, Rennenberg H (eds), Proceedings of the 3rd workshop on sulphur metabolism in higher plants, Newcastle. Backhuys, Leiden, pp 27–38

    Google Scholar 

  • Tomatsu H, Takano J, Takahashi H, Watanabe-Takahashi A, Shibagaki N, Fujiwara T (2007) An Arabidopsis thaliana high-affinity molybdate transporter required for efficient uptake of molybdate from soil. Proc Natl Acad Sci U S A 104:18807–18812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vidmar JJ, Tagmount A, Cathala N, Touraine B, Davidian JC (2000) Cloning and characterization of a root specific high-affinity sulfate transporter from Arabidopsis thaliana. FEBS Lett 475:65–69

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Rothamsted Research receives support from the Biotechnology and Biological Sciences Research Council (BBSRC) of the UK as part of the 20:20 Wheat project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malcolm J. Hawkesford .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Hawkesford, M.J. (2017). Sulfate Transport in Plants: A Personal Perspective. In: De Kok, L., Hawkesford, M., Haneklaus, S., Schnug, E. (eds) Sulfur Metabolism in Higher Plants - Fundamental, Environmental and Agricultural Aspects. Proceedings of the International Plant Sulfur Workshop. Springer, Cham. https://doi.org/10.1007/978-3-319-56526-2_1

Download citation

Publish with us

Policies and ethics