The Theory of a Local Ignition

  • Nickolai M. RubtsovEmail author
  • Boris S. Seplyarskii
  • Michail I. Alymov
Part of the Heat and Mass Transfer book series (HMT)


It is shown that the problem on a local ignition comes down to the analysis of the dynamics of a reaction zone under condition of cooling of the ignition center with the inert environment; at the same time the power of a chemical heat source during the induction period can be considered approximately constant. The approximate analytical method is applied for analysis of the problem on a local chain-thermal explosion in the reaction of hydrogen oxidation in the presence of chemically active additive. The concept of an intermediate combustion wave with the maximum temperature equal to the initial temperature of the hot spot is introduced. It is shown that key parameters defining the critical size of a local source of ignition, are the temperature in the center of a local ignition zone, the quantity of the active centers of combustion created with the local source, and presence of active chemical additives in a combustible gaseous mixture. Comparison to experimental data has shown the applicability of the developed approach for the analysis of critical conditions of a local ignition in combustible gas mixtures.


Local ignition center Critical size Hot spot Adiabatic induction period Heat losses Thermal explosion Approximate analytical Numerical calculations 


  1. 1.
    Merzhanov, A.G.: On critical conditions for thermal explosion of a hot spot. Comb. Flame 9(3), 341 (1966)CrossRefGoogle Scholar
  2. 2.
    Seplyarsky, B.S., Afanasiev, S.Y.: On the theory of a local thermal explosion. Rus. J. Chem. Phys. B. 8(5), 646 (1989)Google Scholar
  3. 3.
    Seplyarsky, B.S., Afanasiev, S.Y.: On the theory of a local thermal explosion. Combus. Explosion, Shock Waves. 22(6), 9 (1989) (in Russian)Google Scholar
  4. 4.
    Zel’dovich, Y.B., Barenblatt, G.A., Librovich, V.B., Machviladze, D.V.: Mathematical Theory of Flame Propagation. Nauka. Moscow. (1980) (in Russian)Google Scholar
  5. 5.
    Aldushin A.P.: o-adiabatic waves of combustion of condensed systems with dissociating products. Combust. Explosion Shock Waves (3), 10 (in Russian) (1984)Google Scholar
  6. 6.
    Semenov N.N.: On some problems of chemical kinetics and reaction ability. Academy of Sciences USSR. Moscow (1958) (in Russian)Google Scholar
  7. 7.
    Markstein, G.H. (ed.) Nonsteady Flame Propagation. Pergamon Press, Oxford, London (1964)Google Scholar
  8. 8.
    Lewis, B., Von Elbe, G.: Combustion, Explosions and Flame in Gases. Academic Press, London, New York (1987)Google Scholar
  9. 9.
    Sokolik, A.S.: Self-ignition, flame and detonation in gases. Academy of Sciences USSR, Moscow (1960) (in Russian)Google Scholar
  10. 10.
    Rubtsov, N.M., Seplyarsky, B.S., Tsvetkov, G.I., Chernysh, V.I.: Influence of inert additives on the time of formation of steady spherical fronts of laminar flames of mixtures of natural gas and isobutylene with oxygen under spark initiation, Mendeleev Commun. 19, 15 (2009)Google Scholar
  11. 11.
    Zel’dovich, Y.B., Simonov, N.N.: On the theory of spark ignition of gaseous combustible mixtures. Rus. J. Phys. chem. A. 23(11), 1361 (in Russian) (1949)Google Scholar
  12. 12.
    Schetinkov, E.S.: Physics of Gaseous Combustion, Moscow (1965) (in Russian)Google Scholar
  13. 13.
    Rubtsov, N.M.,Tsvetkov, G.I., Chernysh, V.I.: Different character of action of small chemically active additives on the ignition of hydrogen and methane. Rus. J. Kinet. Catal. 49(3), 363 (2007)Google Scholar
  14. 14.
    Warnatz, J., Maas, U., Dibble, R.W.: Combustion Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation, 4th edn. Springer, Berlin, Heidelberg (1996, 1999, 2001 and 2006) (Printed in Germany)Google Scholar
  15. 15.
    Ono, R., Nifuku, M., Fujiwara, S., Horiguchi, S., Oda, T.: Gas temperature of capacitance spark discharge in the air, J. Appl. Phys. 97(12), 123307–123314 (2005)Google Scholar
  16. 16.
    Kikoin, E.K. (ed): Tables of Physical Values, Handbook. Atomizdat, Moscow (1976) (in Russian)Google Scholar
  17. 17.
    Germann, T.C.,Miller, W.H.: Quantum mechanical pressure dependent reaction and recombination rates for OH + O → O2 + H. J. Phys. Chem. A. 101, 6358–6367 (1997)Google Scholar
  18. 18.
    Halstead, C.J., Jenkins, D.R.: Rates of H + H + M and H + OH + M reactions in flames. Combust. Flame 14, 321–324 (1970)Google Scholar
  19. 19.
    Atkinson, R., Baulch, D.L., Cox, R.A., Hampson, R.F. Jr., Kerr, J.A., Rossi, M.J., Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: supplement VI. IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry. J. Phys. Chem. Ref. Data 26, 1329 (1997)Google Scholar
  20. 20.
    Azatyan, V.V., Alexandrov, E.N., Troshin, A.F.: On the velocity of chain initiation in reactions of hydrogen and deuterium combustion. Rus. J. Kinet. Catal. 16, 306 (1975) (in Russian)Google Scholar
  21. 21.
    Rubtsov, N.M., Seplyarsky, B.S.,Tsvetkov, G.I.,Chernysh, V.I.: Flame propagation limits in H2—air mixtures in the presence of small inhibitor additives. Mendeleev Commun. 18, 105–108 (2008)Google Scholar
  22. 22.
    Voevodsky, V.V., Soloukhin, R. I.: On the mechanism and explosion limits of hydrogen-oxygen chain self-ignition in shock waves. In: International symposium on combustion. The Combustion Institute, Pittsburgh, p. 279 (1965)Google Scholar
  23. 23.
    Borisov, A.A., Zamanski, V.M., Lisyanski, V.V., Troshin, K.Y.: On the promotion in branched chain reactions. II acceleration of chain branching. Rus. J. Chem. Phys. B. 11(9), 1235 (1992)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Nickolai M. Rubtsov
    • 1
    Email author
  • Boris S. Seplyarskii
    • 1
  • Michail I. Alymov
    • 1
  1. 1.Institute of Structural Macrokinetics and Materials ScienceRussian Academy of SciencesMoscowRussia

Personalised recommendations