• Nickolai M. RubtsovEmail author
  • Boris S. Seplyarskii
  • Michail I. Alymov
Part of the Heat and Mass Transfer book series (HMT)


Theoretical approaches and models based on analytical consideration presented in the book are a most dynamic way of conceiving this field of science, because they give a common thread for explanation of experimental features of combustion.


Reaction Zone Combustion Wave Combustion Synthesis Flame Propagation Combustion Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Merzhanov, A.G.: Theory and practice of SHS: worldwide state of the art and the newest results. Int. J. SHS 2, 113 (1993)Google Scholar
  2. 2.
    Shkiro, V.M., Nersisyan, G. A., Borovinskaya, I.P., Merzhanov, A.G., Shekhtman, V.I.: Synthesis of carbides of tantalum by SVS method. Powder Metall. 4(196), 14 (1979) (in Russian)Google Scholar
  3. 3.
    Rogachev, A.S., Mukasyan, A.S.: Combustion for Material Synthesis. CRC-Press, Boca Raton (2014). ISBN-13 978-1482239515Google Scholar
  4. 4.
    Zel’dovich, Y.B., Frank-Kamenetskii, D.A.: Theory of uniform flame propagation, Zh. Fiz. Khim. 12, 100 (1938) (in Russian)Google Scholar
  5. 5.
    Haykin, B.I., Merzhanov, A.G.: Theory of thermal propagation of a chemical reaction. Front. Combust. Explos. Shock Waves 2, 22 (1966) (in Russian)Google Scholar
  6. 6.
    Merzhanov, A.G.: Arch. Procesow Spalania 5(1), 17Google Scholar
  7. 7.
    Merzhanov, A.G.: SHS-process: combustion theory and practice. Arch. Comb. 1, 23Google Scholar
  8. 8.
    Lakshmikantha, M.G., Sekhar, J.A.: Analytical modeling of the propagation of a thermal reaction front in condensed systems. J. Am. Ceram. Soc. 77(1), 202Google Scholar
  9. 9.
    Lakshmikantha, M.G., Sekhar, J.A.: An investigation on the effect on porosity and diluents on micropyretic synthesis. Metall. Trans. A, 24A, 617 (1993)Google Scholar
  10. 10.
    Smolyakov, V.K.: Inert additive melting in a gasless combustion wave. Combust. Explos. Shock Waves 38(5), 559 (2002)Google Scholar
  11. 11.
    Fu, Z.Y., Yuan, R.Z., Munir, Z.A., Yang, Z.L.: Fundamental study on SHS preparation of TiB2-Al composites. Int. J. SHS 1(1), 19 (1992)Google Scholar
  12. 12.
    Li, H.P., Sekhar, J.A.: The influence of the reactant size on the micropyretic synthesis of NiAl intermetallic compounds. J. Mater. Res. 10(10), 2471–2480Google Scholar
  13. 13.
    Li, H.P.: Investigation of propagation modes and temperature/velocity variation on unstable combustion synthesis. J. Mater. Res. 17(12), 3213 (2002)Google Scholar
  14. 14.
    Bhattacharya, A.K.: Green density of a powder compact and its influence on the steady-state wave velocity in combustion synthesis of condensed phase. J. Am. Ceram. Soc. 74(9), 2113 (1991)Google Scholar
  15. 15.
    Kachelmyer, C.R., Varma, A., Rogachev, A.S., Sytschev, A.E.: Influence of reaction mixture porosity on the effective kinetics gasless combustion synthesis. Ind. Eng. Chem. Res. 37, 2246 (1998)Google Scholar
  16. 16.
    Rice, R.W.: Review microstructural aspects of fabricating bodies by self-propagating synthesis. J. Mater. Sci. 26, 6533 (1991)Google Scholar
  17. 17.
    Lau, C., Mukasyan, A.S., Varma, A.: Reaction and phase separation mechanisms during synthesis of alloys by thermite type combustion reactions. J. Mater. Res. 18(1), 121 (2003)Google Scholar
  18. 18.
    Merzhanov, A.G., Haykin, B.I.: Theory of combustion waves in homogeneous media. Progr. Energy Combust. Sci. 14, 1 (1988)Google Scholar
  19. 19.
    Belyaev, A.F.: About relaxation mechanism of propagation on the heterogeneous exothermic systems. Zh. Fiz. Khim. 12, 94 (1938) (in Russian)Google Scholar
  20. 20.
    Hardt, A.P., Phung, P.V.: Propagation of gasless reactions in solids I. Analytical study of exothermic intermetallic reaction rates. Combust. Flame 21, 77–89 (1973)Google Scholar
  21. 21.
    Merzhanov, A.G., Gordopolov, Y.A, Trofimov, V.S.: On the possibility of gasless detonation in condensed systems. Shock Waves 8, 157–159 (1998)Google Scholar
  22. 22.
    Gur’ev, D.L., Gordopolov, Y.A., Batsanov, S.S., Merzhanov, A.G., Fortov, V.E.: Solid-state detonation in the zinc-sulfur system. Appl. Phys. Lett. 88, 024102-1:3 (2006)Google Scholar
  23. 23.
    Pantoya, M.L., Granier, J.J.: Combustion behavior of highly energetic thermites: nano versus micron composites. Propell. Explos. Pyrotech. 30, 53(2005)Google Scholar
  24. 24.
    Apinhapat, P., Pittayaprasertkul, N.: Experimental investigation on pyrotechnic igniter for solid rocket motor. In: 5th International Conference on Chemical Engineering and Applications, vol. 74, p. 15. IACSIT Press, Singapore (2014)Google Scholar
  25. 25.
    Apinhapat, P.: Mass and energy balance technique for rocket motor igniter design criteria with a high free volume. In: The 44th International Annual Conference of the Fraunhofer, p. 95. ICT, Germany (2013)Google Scholar
  26. 26.
    Carr, C.E., Thomas, M.J.: Factors influencing BKNO3 igniter performance. AIAA Paper No. 87-1985 (1987)Google Scholar
  27. 27.
    Robertson, W.E.: Igniter material considerations and applications. AIAA Paper No. 72-1195 (1972)Google Scholar
  28. 28.
    Morrow, R.B., Pines, M.S.: Small Sounding Rockets. Small Rockets Press, New York (2000)Google Scholar
  29. 29.
    Wells, J.E.: Apparatus and process for producing predominately iron alloy containing magnesium. US Patent 4.519.838, 28 May 1985Google Scholar
  30. 30.
    Baldi, A.L: Metal treatment. US Patent 5.182.078, 26 Jan 1993Google Scholar
  31. 31.
    Amstrong, R.: Models for gasless combustion in layered materials and random media. Combust. Sci. Technol. 71, 155–174 (1990)Google Scholar
  32. 32.
    Lewis, B., von Elbe, G.J.: J. Chem. Phys. 2, 537 (1934)Google Scholar
  33. 33.
    Pacheco, M.M.: Self-sustained High-Temperature Reactions: Initiation, Propagation and Synthesis. Proefschrift, Universidad Carlos III de Madrid. ISBN 978-90-77172-27-8 Printed by PrintPartners Ipskamp, The Netherlands (
  34. 34.
    Buckmaster, J.D.: The Mathematics of Combustion, Frontiers in Combustion, vol. 2. SIAM, Philadelphia, PA (1985)CrossRefzbMATHGoogle Scholar
  35. 35.
    Turns, S.R.: An Introduction to Combustion: Concepts and Applications. McGraw-Hill Series in Mechanical Engineering, 2nd edn. McGraw-Hill, Singapore (2000)Google Scholar
  36. 36.
    Sahraoui, M., Kaviany, M.: Direct simulation vs volume-averaged treatment of adiabatic premixed flame in a porous medium. Int. J. Heat Mass Trans. 37, 2817 (1994)CrossRefzbMATHGoogle Scholar
  37. 37.
    Lu, C., Yortsos, Y.C.: Pattern formation in reverse filtration combustion. Phys. Rev. E: Stat. Nonlin. Soft Matt. Phys. 72 (2005). doi: 10.1103/PhysRevE.72.036201
  38. 38.
    Zik, O., Moses, E.: Fingering instability in combustion: an extended view. Phys. Rev. E: Stat. Nonlin. Soft Matt. Phys. 60, 518 (1999)Google Scholar
  39. 39.
    Kagan, L., Sivashinsky, G.: Pattern formation in flame spread over thin solid fuels. Combust. Theory Model. 12, 269 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Debenest, G., Mourzenko, V., Thovert, J.: Smouldering in fixed beds of oil shale grains. A three-dimensional microscale numerical model. Combust. Theory Model. 9, 113 (2005)CrossRefzbMATHGoogle Scholar
  41. 41.
    Rein, G.: Computational model of forward and opposed smoldering combustion with improved chemical kinetics. Ph.D. dissertation, University of California, Berkeley (2005)Google Scholar
  42. 42.
    Ohlemiller, T.J.: Modeling of smoldering combustion propagation. Prog. Energy Combust. Sci. 11, 277 (1985)CrossRefGoogle Scholar
  43. 43.
    Ikeda, K., Mimura, M.: Mathematical treatment of a model for smoldering combustion. Hiroshima Math. J. 38, 349 (2008)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Zik, O., Olami, Z., Moses, E.: Fingering instability in combustion. Phys. Rev. Lett. 81, 3868 (1998)CrossRefGoogle Scholar
  45. 45.
    Zik, O., Moses, E.: Fingering instability in combustion: the characteristic scales of the developed state. Proc. Combust. Inst. 27, 2815 (1998)CrossRefGoogle Scholar
  46. 46.
    Fasano, A., Mimura, M., Primicerio, M.: Modelling a slow smoldering combustion process, Math. Meth. Appl. Sci. 1 (2009)Google Scholar
  47. 47.
    Decker, M.A., Schult, D.A.: Dynamics of smoulder waves near extinction. Combust. Theory Model 8, 491 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Ijioma, E.R., Ogawa, T., Muntean, A.: Pattern formation in reverse smoldering combustion: a homogenization approach. Combust. Theory Model. 17(2),185 (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Nickolai M. Rubtsov
    • 1
    Email author
  • Boris S. Seplyarskii
    • 1
  • Michail I. Alymov
    • 1
  1. 1.Institute of Structural Macrokinetics and Materials ScienceRussian Academy of SciencesMoscowRussia

Personalised recommendations