Skip to main content

LCA of Drinking Water Supply

  • Chapter
  • First Online:
Book cover Life Cycle Assessment

Abstract

Water supplies around the globe are growing complex and include more intense treatment methods than just decades ago. Now, desalination of seawater and wastewater reuse for both non-potable and potable water supply have become common practice in many places. LCA has been used to assess the potentials and reveal hotspots among the possible technologies and scenarios for water supplies of the future. LCA studies have been used to support decisions in the planning of urban water systems and some important findings include documentation of reduced environmental impact from desalination of brackish water over sea water, the significant impacts from changed drinking water quality and reduced environmental burden from wastewater reuse instead of desalination. Some of the main challenges in conducting LCAs of water supply systems are their complexity and diversity, requiring very large data collection efforts, with multiple sources of information, many of them not public and requiring cooperation. Important for product and system LCAs with substantial water use, it is emphasized that standard life cycle inventory databases do not reflect the significant variance in environmental impacts of water supply across locations and technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Amores, M.J., Meneses, M., Pasqualino, J., Antón, A., Castells, F.: Environmental assessment of urban water cycle on Mediterranean conditions by LCA approach. J. Clean. Prod. 43, 84–92 (2013)

    Article  Google Scholar 

  • Angrill, S., Farreny, R., Gasol, C.M., Gabarrell, X., Vinolas, B., Josa, A., Rieradevall, J.: Environmental analysis of rainwater harvesting infrastructures in diffuse and compact urban models of Mediterranean climate. Int. J. Life Cycle Assess. 17(1), 25–42 (2012)

    Article  Google Scholar 

  • Arpke, A., Hutzler, N.: Domestic water use in the United States: a life-cycle approach. J. Ind. Ecol. 10(1–2), 169–184 (2006)

    Google Scholar 

  • Barjoveanu, G., Comandaru, I.M., Rodriguez-Garcia, G., Hospido, A., Teodosiu, C.: Evaluation of water services system through LCA. A case study for Iasi City, Romania. Int. J. Life Cycle Assess. 19, 449–462 (2014)

    Article  Google Scholar 

  • Barrios R, Siebel M, van der Helm A, Bosklopper K, Gijzen H (2008) Environmental and financial life cycle impact assessment of drinking water production at Waternet. J Clean Prod 16:471–476

    Article  Google Scholar 

  • Birnhack, L., Penn, R., Lahav, O.: Quality criteria for desalinated water and introduction of a novel, cost effective and advantageous post treatment process. Desalination 221, 70–83 (2008)

    Article  Google Scholar 

  • Bonton, A., Bouchard, C., Barbeau, B., Jedrzejak, S.: Comparative life cycle assessment of water treatment plants. Desalination 284, 42–54 (2012)

    Article  Google Scholar 

  • Botto, S., Niccolucci, V., Rugani, B., Nicolardi, V., Bastianoni, S., Gaggi, C.: Towards lower carbon footprint patterns of consumption: the case of drinking water in Italy. Environ. Sci. Policy 14, 388–395 (2011)

    Article  Google Scholar 

  • Boulay, A.-M., Bare, J., De Camillis, C., Döll, P., Gassert, F., Gerten, D., Humbert, S., Inaba, A., Itsubo, N., Lemoine, Y., Margni, M., Motoshita, M., Núñez, M., Pastor, A.V., Ridoutt, B., Schencker, U., Shirakawa, N., Vionnet, S., Worbe, S., Yoshikawa, S., Pfister, S.: Consensus building on the development of a stress-based indicator for LCA-based impact assessment of water consumption: outcome of the expert workshops. Int. J. Life Cycle Assess. 20, 577–583 (2015a)

    Article  Google Scholar 

  • Boulay, A.-M., Motoshita, M., Pfister, S., Bulle, C., Muñoz, I., Franceschini, H., Margni, M.: Analysis of water use impact assessment methods (part A): evaluation of modeling choices based on a quantitative comparison of scarcity and human health indicators. Int. J. Life Cycle Assess. 20, 139–160 (2015b)

    Article  Google Scholar 

  • Buckley, C., Friedrich, E., Von Blottnitz, H.: Life-cycle assessments in the South African water sector: a review and future challenges. Water SA 37, 719–726 (2011)

    Article  Google Scholar 

  • Crettaz, P., Jolliet, O., Cuanillon, J.-M., Orlando, S.: Life cycle assessment of drinking water and rain water for toilets flushing. Aqua (Oxford) 48(3), 73–83 (1999)

    Google Scholar 

  • Danva: Udviklingen i spildevandsselskabernes energiforbrug 2005–2009 (eng.: Development of Energy consumption at the wastewater treatment plants 2005–2009). Danva, Dansk vand-og spildevandsforening (2010)

    Google Scholar 

  • de Haas, D., Lane, J., Lant, P.: Life cycle assessment of the Gold Coast urban water system. Water 38, 57–64 (2011)

    Google Scholar 

  • Del Borghi, A., Strazza, C., Gallo, M., Messineo, S., Naso, M.: Water supply and sustainability: life cycle assessment of water collection, treatment and distribution service. Int. J. Life Cycle Assess. 18, 1158–1168 (2013)

    Article  Google Scholar 

  • GWI: Water Market Middle East 2010, Global water intelligence (2010)

    Google Scholar 

  • El-Sayed Mohamed Mahgoub, M., van der Steen, N.P., Abu-Zeid, K., Vairavamoorthy, K.: Towards sustainability in urban water: a life cycle analysis of the urban water system of Alexandria City, Egypt. J. Clean Prod. 18, 1100–1106 (2010)

    Article  Google Scholar 

  • European Commission: The EU water framework directive—integrated river basin management for Europe [WWW Document] (2012). http://ec.europa.eu/environment/water/water-framework/index_en.html. Accessed 14 Jan 2013

  • Fang, L.L., Valverde Perez, B., Damgaard, A., Plósz, B.G., Rygaard, M.: Life cycle assessment as development and decision support tool for wastewater resource recovery technology. Water Res. 88, 538–549 (2016). doi:10.1016/j.watres.2015.10.016

    Article  Google Scholar 

  • Friedrich, E., Pillay, S., Buckley, C.: Carbon footprint analysis for increasing water supply and sanitation in South Africa: a case study. J. Clean. Prod. 17, 1–12 (2009)

    Article  Google Scholar 

  • Gleeson, T., Wada, Y., Bierkens, M.F.P., van Beek, L.P.H.: Water balance of global aquifers revealed by groundwater footprint. Nature 488, 197–200 (2012)

    Article  Google Scholar 

  • Godskesen, B.: Sustainability evaluation of water supply technologies—by using life-cycle and freshwater withdrawal impact assessment and multi-criteria analysis. PhD Thesis. DTU Environment (2012)

    Google Scholar 

  • Godskesen, B., Zambrano, K.C., Trautner, A., Johansen, N.B., Godskesen, B., Rygaard, M., Albrechtsen, H.J., Johansen, N.B., Thiesson, L., Andersen, L., Clauson-Kaas, J., Neidel, T.L., Andersen, L., Clauson-Kaas, J., Neidel, T.L., Kløverpris, N.H.: Life cycle assessment of three water systems in Copenhagen—a management tool of the future. Water Sci. Technol. 63(3), 565–572 (2011)

    Article  Google Scholar 

  • Godskesen, B., Hauschild, M.Z., Rygaard, M., Zambrano, K.C., Albrechtsen, H.J.: Life cycle assessment of central softening of very hard drinking water. J. Environ. Manage. 105, 83–89 (2012)

    Article  Google Scholar 

  • Godskesen, B., Hauschild, M.Z., Rygaard, M., Zambrano, K.C., Albrechtsen, H.J.: Life-cycle and freshwater withdrawal impact assessment of water supply technologies. Water Res. 47(7), 2363 (2013)

    Article  Google Scholar 

  • Greenlee, L.F., Lawler, D.F., Freeman, B.D., Marrot, B., Moulin, P.: Reverse osmosis desalination: Water sources, technology, and today’s challenges. Water Res. 43, 2317–2348 (2009)

    Article  Google Scholar 

  • Herz, R., Lipkow, A.: Life cycle assessment of water mains and sewers. Water Supply 2, 51–58 (2002)

    Article  Google Scholar 

  • Hoekstra, A.Y., Chapagain, A.K., Aldaya, M.M., Mekonnen, M.M.: The Water Footprint Assessment Manual: Setting the Global Standard. Earthscan (2011). ISBN: 978-1-84971-279-8

    Google Scholar 

  • Homäki, K., Nielsen, P.H., Sathasivan, A., Bohe, E.L.: Life cycle assessment and environmental improvement of residential and drinking water supply systems in Hanoi, Vietnam. Int. J. Sust. Dev. World 10, 27–42 (2003)

    Article  Google Scholar 

  • Hospido, A., Núñez, M., Antón, A.: Irrigation mix: how to include water sources when assessing freshwater consumption impacts associated to crops. Int. J. Life Cycle Assess. 18, 881–890 (2013)

    Article  Google Scholar 

  • Igos, E., Dalle, A., Tiruta-Barna, L., Benetto, E., Baudin, I., Mery, Y.: Life cycle assessment of water treatment: what is the contribution of infrastructure and operation at unit process level? J. Clean. Prod. 65, 424–431 (2014)

    Article  Google Scholar 

  • ISO: Environmental Management—Life Cycle Assessment—Requirements and Guidelines (ISO 14044). ISO, the International Organization for Standardization, Geneva (2006)

    Google Scholar 

  • IWA: International Statistics for Water Services. International Water Association, London (2014)

    Google Scholar 

  • Jensen, M.B.: Basisrapport: Dobbeltporøs filtrering. Pilotafprøvning—Rensning af vejvand i Ørestad. Hændelse 1–25, januar–juli 2007 (eng.: Double Porous Filter—Pilot project). KU Life, Denmark (2009)

    Google Scholar 

  • Jeong, H., Minne, E., Crittenden, J.C.: Life cycle assessment of the City of Atlanta, Georgia’s centralized water system. Int. J. Life Cycle Assess. 20, 880–891 (2015)

    Article  Google Scholar 

  • Jungbluth, N.: Comparison of the environmental impact of drinking water vs. bottled mineral water. Manuscript for the SGWA information bulleting and GWA. Uster (2006)

    Google Scholar 

  • Kenway, S., Gregory, A., McMahon, J.: Urban water mass balance analysis. J. Ind. Ecol. 15(5), 693–706. doi:10.1111/j.1530-9290.2011.00357.x (2011)

  • Klaversma, E., van der Helm, A.W.C., Kappelhof, J.W.N.M.: The use of life cycle assessment for evaluating the sustainability of the Amsterdam water cycle. J. Water Climate Change 04(2), 103–109 (2013)

    Article  Google Scholar 

  • Lai, E., Lundie, S., Ashbolt, N.J.: Review of multi-criteria decision aid for integrated sustainability assessment of urban water systems. Urban Water J. 5(4), 315–327 (2008)

    Article  Google Scholar 

  • Lane, J.L., de Haas, D.W., Lant, P.A.: The diverse environmental burden of city-scale. Water Res. 81, 398–415 (2015)

    Article  Google Scholar 

  • Lassaux, S., Renzoni, R., Germain, A.: Life cycle assessment of water from the pumping station to the wastewater treatment plant. Int. J. Life Cycle Assess. 12(2), 118–126 (2007)

    Article  Google Scholar 

  • Lawler, W., Alvarez-Gaitan, J., Leslie, G., Le-Clech, P.: Comparative life cycle assessment of end-of-life options for reverse osmosis membranes. Desalination 357, 45–54 (2015)

    Article  Google Scholar 

  • Lemos, D., Dias, A.C., Gabarrell, X., Arroja, L.: Environmental assessment of an urban water system. J. Clean. Prod. 54, 157–165 (2013)

    Article  Google Scholar 

  • Li, Y., Xiong, W., Zhang, W., Wang, C., Wang, P.: Life cycle assessment of water supply alternatives in water-receiving areas of the South-to-North water diversion project in China. Water Res. 89, 9–19 (2016)

    Article  Google Scholar 

  • Lundie, S., Peters, G., Ashbolt, N., Lai, E., Livingston, D.: Water resources—a sustainability framework for the Australian water industry—the best of current strategic planning and sustainability assessments. Water 33(7), 3465–3473 (2006)

    Google Scholar 

  • Lundie, S., Peters, G.M., Beavis, P.C.: Life cycle assessment for sustainable metropolitan water systems planning. Environ. Sci. Technol. 38(13), 3465–3473 (2004)

    Article  Google Scholar 

  • Lyons, E., Zhang, P., Benn, T., Sharif, F., Costanza, M., Li, K., Crittenden, J., Chen, Y.S.: Life cycle assessment of three water supply systems: importation, reclamation and desalination. Water Sci. Technol. Water Supply. 9(4), 439–448 (2009)

    Article  Google Scholar 

  • Meneses, M., Pasqualino, J.C., Céspedes-Sánchez, R., Castells, F.: Alternatives for reducing the environmental impact of the main residue from a desalination plant. J. Ind. Ecol. 14, 512–527 (2010)

    Article  Google Scholar 

  • Meron, N., Blass, V., Garb, Y., Kahane, Y., Thoma, G.: Why going beyond standard LCI databases is important: lessons from a meta-analysis of potable water. Int. J. Life Cycle Assess. 21, 1134–1147 (2016)

    Google Scholar 

  • Mithraratne, N., Vale, R.: Conventional and alternative water supply systems: a life cycle study. Int. J. Environ. Sustain. Dev. 6(2), 136–146 (2007)

    Article  Google Scholar 

  • Mohapatra, P., Siebel, M., Gijzen, H., Van der Hoek, J., Groot, C.: Improving eco-efficiency of Amsterdam water supply: a LCA approach. Aqua J. Water Supply Res. Technol. 51, 217–228 (2002)

    Article  Google Scholar 

  • Muñoz, I., Fernández-Alba, A.R.: Reducing the environmental impacts of reverse osmosis desalination by using brackish groundwater resources. Water Res. 42(3), 801–811 (2008)

    Article  Google Scholar 

  • Muñoz, I., Rodríguez, A., Rosal, R., Fernández-Alba, A.R.: Life cycle assessment of urban wastewater reuse with ozonation as tertiary treatment: a focus on toxicity-related impacts. Sci. Total Environ. 407(4), 1245–1256 (2009)

    Article  Google Scholar 

  • Nessi, S., Rigamonti, L., Grosso, M.: LCA of waste prevention activities: a case study for drinking water in Italy. J. Environ. Manage. 108, 73–83 (2012)

    Article  Google Scholar 

  • Niccoluci, V., Rugani, B., Botto, S., Gaggi, C.: An integrated footprint based approach for environmental labelling of products: the case of drinking bottled water. Int. J. Design Nature Ecodyn. 5(1), 68–75 (2010)

    Article  Google Scholar 

  • Núñez, M., Pfister, S., Vargas, M., Antón, A.: Spatial and temporal specific characterisation factors for water use impact assessment in Spain. Int. J. Life Cycle Assess. 20, 128–138 (2015)

    Article  Google Scholar 

  • Núñez, M., Bouchard, C., Boulay, A.M., Bulle, C., Margni, M.: Critical analysis of life cycle impact assessment methods addressing consequences of freshwater use on ecosystems and recommendations for future method development. Int. J. Life Cycle Assess. (2016). doi:10.1007/s11367-016-1127-4

    Article  Google Scholar 

  • Owens, J.W.: Water resources in life-cycle impact assessment: considerations in choosing category indicators. J. Ind. Ecol. 5(2), 37–54 (2001)

    Article  MathSciNet  Google Scholar 

  • Pankratz, T.: IDA Desalination Yearbook 2009–2010. Media Analytics Ltd, Oxford (2010)

    Google Scholar 

  • Pasqualino, J.C., Meneses, M., Castells, F.: Life cycle assessment of urban wastewater reclamation and reuse alternatives. J. Ind. Ecol. 15, 49–63 (2011)

    Article  Google Scholar 

  • Petersen, S.: Central Sekundavandsopsamling (eng. Centralized rainwater harvesting for non-potable purposes). Student project carried out in cooperation between HOFOR and DTU (2011)

    Google Scholar 

  • Plappally, A.K., Lienhard, V.J.H.: Energy requirements for water production, treatment, end use, reclamation, and disposal. Renew. Sustain. Energy Rev. 16(7), 4818–4848 (2012)

    Article  Google Scholar 

  • Racoviceanu, A.I., Karney, B.W., Kennedy, C.A., Colombo, A.F.: Life-cycle energy use and greenhouse gas emissions inventory for water treatment systems. J. Infrastruct. Syst. 13, 261–270 (2007)

    Article  Google Scholar 

  • Raluy, R.G., Serra, L., Uche, J.: Life cycle assessment of water production technologies—part 1: life cycle assessment of different commercial desalination technologies (MSF, MED, RO) (9 pp). Int. J. Life Cycle Assess. 10(4), 285–293 (2005a)

    Article  Google Scholar 

  • Raluy, R.G., Serra, L., Uche, J.: Life cycle assessment of water production technologies—part 2: reverse osmosis desalination versus the Ebro river water transfer. Int. J. Life Cycle Assess. 10(5), 436–454 (2005b)

    Article  Google Scholar 

  • Ratnayaka, D.D., Brandt, M.J., Johnson, M.: Twort’s water supply, 5th edn. Butterworth-Heinemann, London (2009)

    Google Scholar 

  • Rygaard, M., Albrechtsen, H.-J., Jensen, I., Pedersen, C., Sørensen, S., Zambrano, K.: Catalogue of development projects—identified at three workshops with AarhusVand, Københavns Energi and DTU (in Danish: Udviklingskatalog—Opsamling på 3 workshops afholdt i samarbejdet Fremtidens vandhåndtering i Storbyer). DTU, Miljøvej, Bygning 113, DK-2800 Kgs. Lyngby (2012)

    Google Scholar 

  • Rygaard, M., Arvin, E., Bath, A., Binning, P.J.: Designing water supplies: optimizing drinking water composition for maximum economic benefit. Water Res. 45(12), 3712–3722 (2011)

    Article  Google Scholar 

  • Rygaard, M., Godskesen, B., Jørgensen, C., Hoffmann, B.: Holistic assessment of a secondary water supply for a new development in Copenhagen, Denmark. Sci. Total Environ. 497–498, 430–439 (2014). doi:10.1016/j.scitotenv.2014.07.078

    Article  Google Scholar 

  • Sanjuan-Delmás, D., Petit-Boix, A., Gasol, C.M., Villalba, G., Suárez-Ojeda, M.E., Gabarrell, X., Josa, A., Rieradevall, J.: Environmental assessment of different pipelines for drinking water transport and distribution network in small to medium cities: a case from Betanzos, Spain. J. Clean. Prod. 66, 588–598 (2014)

    Article  Google Scholar 

  • Sharma, A.K., Grant, A.L., Grant, T., Pamminger, F., Opray, L.: Environmental and economic assessment of urban water services for a greenfield development. Environ. Eng. Sci. 26(5), 921–934 (2009)

    Article  Google Scholar 

  • Slagstad, H., Brattebø, H.: Life cycle assessment of the water and wastewater system in Trondheim, Norway—a case study: case study. Urban Water J. 11, 323–334 (2014)

    Article  Google Scholar 

  • Smakhtin, V., Revenga, C., Doll, P.: A pilot global assessment of environmental water requirements and scarcity. Water Int. 29(3), 307–317 (2004)

    Article  Google Scholar 

  • Sombekke, H.D.M., Voorhoeve, D.K., Hiemstra, P.: Environmental impact assessment of groundwater treatment with nanofiltration. Desalination 113(2–3), 293–296 (1997)

    Article  Google Scholar 

  • Stokes, J., Horvath, A.: Life cycle energy assessment of alternative water supply systems. Int. J. Life Cycle Assess. 11(5), 335–343 (2006)

    Article  Google Scholar 

  • Tal, A.: Seeking sustainability: Israel’s evolving water management strategy. Science 80(313), 1081–1084 (2006)

    Article  Google Scholar 

  • Tangsubkul, N., Beavis, P., Moore, S., Lundie, S., Waite, T.: Life cycle assessment of water recycling technology. Water Resour. Manage. 19, 521–553 (2005)

    Article  Google Scholar 

  • Tarantini, M., Ferri, F.: LCA of drinking and wastewater treatment systems of Bologna city: final results. In: Proceedings of the 4th Inter-Regional Conference on Environment-Water, 27–30 Aug 2001, Fortaleza (2001)

    Google Scholar 

  • Tarnacki, K., Meneses, M., Melin, T., van Medevoort, J., Jansen, A.: Environmental assessment of desalination processes: reverse osmosis and Memstill®. Desalination 296, 69–80 (2012)

    Article  Google Scholar 

  • Uche, J., Martínez, A., Castellano, C., Subiela, V.: Life cycle analysis of urban water cycle in two Spanish areas: Inland city and island area. Desalin. Water Treat 51, 280–291 (2013)

    Article  Google Scholar 

  • UNEP: Rio declaration on environment and development. In: United Nations Publication (1992)

    Google Scholar 

  • USGS: Water Hardness and Alkalinity (2012). http://water.usgs.gov/owq/hardness-alkalinity.html

  • Vieira, A.S., Beal, C.D., Ghisi, E., Stewart, R.A.: Energy intensity of rainwater harvesting systems: a review. Renew. Sustain. Energy Rev. 34(June), 225–242 (2014). doi:10.1016/j.rser.2014.03.012

    Article  Google Scholar 

  • WCED: Report of the World Commission on Environment and Development: Our Common Future. Oxford University Press, New York (1987)

    Google Scholar 

  • Wenzel, H., Hauschild, M.Z., Alting, L.: Environmental Assessment of Products 1: Methodology, Tools and Case Studies in Product Development. Chapman & Hall, London (1997)

    Book  Google Scholar 

  • Wols, B.A., Hofman-Caris, C.H.M.: Review of photochemical reaction constants of organic micropollutants required for UV advanced oxidation processes in water. Water Res. 46, 2815–2827 (2012)

    Article  Google Scholar 

  • Boulay, A.-M., Bare, J., Benini, L., Berger, M., Lathuillière, M., Manzardo, A., Margni, M., Motoshita, M., Núñez, M., Pastor, A.V., Ridoutt, B., Oki, T., Worbe, S., Pfister, S. (accepted): The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (AWARE). Environ. Sci. Technol.

    Google Scholar 

  • Zhou, J., Chang, V.W.C., Fane, A.G.: Environmental life cycle assessment of reverse osmosis desalination: the influence of different life cycle impact assessment methods on the characterization results. Desalination 283, 227–236 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berit Godskesen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Godskesen, B., Meron, N., Rygaard, M. (2018). LCA of Drinking Water Supply. In: Hauschild, M., Rosenbaum, R., Olsen, S. (eds) Life Cycle Assessment. Springer, Cham. https://doi.org/10.1007/978-3-319-56475-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56475-3_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56474-6

  • Online ISBN: 978-3-319-56475-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics