Skip to main content

Quantification of Geodiversity of Sikkim (India) and Its Implications for Conservation and Disaster Risk Reduction Research

Part of the Sustainable Development Goals Series book series (SDGS)

Abstract

Geodiversity is the term which describes the variability of earth’s surface materials, forms and physical processes. Conservation of geodiversity has become increasingly significant in recent decades since it has become obvious that geodiversity provides the abiotic preconditions for habitat development and maintenance and has a crucial influence on biodiversity. The Himalaya is one of the mountain systems showing highest levels of geodiversity and biodiversity. However, no research has been done on the quantification of geodiversity or on the relationships between geodiversity and biodiversity. Sikkim, located in the humid eastern Himalaya, has been selected as a study area within this global hot spot of biodiversity. The main approach of this research was to explore the geodiversity of Sikkim, using topographical and climatological information, and analyse the importance of geodiversity in the context of climate change and future conservation of natural resources. We used several quantitative approaches to produce geodiversity information which could be able to explain biodiversity patterns in the study area, since species richness models can be derived from explicit measures of geodiversity. A detailed database on species (flora) richness has been drawn from several floras and published literature. In Sikkim, the altitudinal range between 500 and 2000 m shows the highest species diversity. At higher altitudes, species diversity decreases, in particular above 5000 m. We used System for Automated Geoscientific Analysis (SAGA) GIS software for automated quantification of geodiversity. We produced a geodiversity index map which almost matches the high richness areas of the biological richness map by the Indian Institute of Remote Sensing (IIRS). Quantifying geodiversity indices for biodiversity hotspots such as Sikkim may contribute to biodiversity as well as geodiversity conservation, and further the understanding of geodiversity–biodiversity relationships.

Keywords

  • Biodiversity
  • Climate change
  • Conservation
  • Disaster risk reduction
  • Geodiversity
  • Sikkim
  • The Himalaya

This is a preview of subscription content, access via your institution.

References

  • Australian Heritage Commission (2002) Australian natural heritage charter for the conservation of places of natural heritage significance, 2nd edn. Australian Heritage Commission in association with the Australian Committee for the International Union for the Conservation of Nature, Canberra

    Google Scholar 

  • Bardgett RD, Campbell CD, Emmett BA, Jenkins A, Whitmore AP (2011) Supporting services. In: the UK national ecosystem assessment technical report. UNEP-WCMC, Cambridge, pp 499–533

    Google Scholar 

  • Benito-Calvo A, Pérez-Gonzàlez A, Magri O, Meza P (2009) Assessing regional geodiversity: the Iberian Peninsula. Earth Surf Proc Land 34(10):1433–1445

    Google Scholar 

  • Brown EJ, Prosser CD, Stevenson NM (2012) Geodiversity, conservation and climate change: key principles for adaptation. Scott Geogr J 128(3–4):234–239

    CrossRef  Google Scholar 

  • Bruschi VM (2007) Desarrollo de una metodología para la caracterización, evaluación y gestión de los recursos de la geodiversidad, Ph.D. Thesis, Universidad de Cantabria, Santander; 355 pp

    Google Scholar 

  • Burnett MR, August PV, Brown JH, Killingbeck KT (1998) The influence of geomorphological heterogeneity on biodiversity. I. A patch-scale perspective. Conserv Biol 12(2):363–370

    CrossRef  Google Scholar 

  • Carcavilla L, López J, Durán JJ (2007) Patrimonio geológico y geodiversidad: investigación, conservación y relación con los espacios naturales protegidos, Cuadernos del Museo Geominero, 7. IGME, Madrid, p 360

    Google Scholar 

  • Cendrero A (1996) Propuesta sobre criterios para la clasificación y catalogación dei Patrimonio Geológico. In: El patrimonio geológico. Bases para su valoración, protección, conservación y utilización. Monografías dei Ministerio de Obras Püblicas, Transportes y Medio Ambiente, Madrid: 29–38

    Google Scholar 

  • Champion HG (1936) A preliminary survey of the forest types of India and Burma. Indian For Rec Ser 2(1):1–286

    Google Scholar 

  • Conrad O, Bechtel B, Bock M, Dietrich H, Fischer E, Gerlitz L, Wehberg J, Wichmann V, Böhner J (2015) System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci Model Dev 8:1991–2007. doi:10.5194/gmd-8-1991-2015

    CrossRef  Google Scholar 

  • Dearing JA, Braimoh AK, Reenberg A, Turner BL, van der Leeuw S (2010) Complex land systems: the need for long time perspectives to assess their future [online], Ecol Soc 15(4) (article 21). Available at: http://www.ecologyandsociety.org/vol15/iss4/art21/

  • Durán JJ, Brusi D, Palli L, Lopez J, Palacio J, Vallejo M (1998) Geología ecológica, geodiversidad, geoconservación y patrimonio geológico: La Declaración de Girona. In: Durán JJ, Vallejo M (eds) Comunicaciones de la IV Reuniön Nacional de Patri¬monio Geológico: (Miraflores de la Sierra) Madrid, Junio-Julio de 1998. Sociedad Geológica de España, Madrid, 69–72. From Serrano E, Ruiz-Flaño P, Valladolid (2007b)

    Google Scholar 

  • Eder W, Patzak M (2004) Geoparks—geological attractions: a tool for public education, recreation and sustainable economic development. Episodes 27:162–164

    Google Scholar 

  • Flood Risk Management (Scotland) Act 2009 (2009) Available at the following address on 15th September 2017. http://www.legislation.gov.uk/asp/2009/6/pdfs/asp_20090006_en.pdf

  • Forests, Environment & Wildlife Management Department, Government of Sikkim (2017) Forest & Forestry. Available at: http://www.sikkimforest.gov.in/Forest.htm

  • Gairola S, Procheş S, Rocchini D (2013) High-resolution satellite remote sensing: a new frontier for biodiversity exploration in Indian Himalayan forests. Int J Remote Sens 34(6):2006–2022. doi:10.1080/01431161.2012.730161

    CrossRef  Google Scholar 

  • Gordon JE, Barron HF (2012) Valuing geodiversity and geoconservation: developing a more strategic ecosystem approach. Scott Geogr J 128(3–4):278–297

    CrossRef  Google Scholar 

  • Gordon JE, Barron HF (2011) Scotland’s geodiversity: development of the basis for a national framework, scottish natural heritage commissioned report, no. 417. Scottish Natural Heritage, Battleby

    Google Scholar 

  • Grau O, Grytnes JA, Birks HJB (2007) A comparison of altitudinal species richness patterns of bryophytes with other plant groups in Nepal, Central Himalaya. J Biogeogr 34:1907–1915

    Google Scholar 

  • Gray M (2004) Geodiversity. Valuing and conserving abiotic nature. Wiley, Chichester

    Google Scholar 

  • Gray M (2011) Other nature: geodiversity and geosystem services. Environ Conserv 38:271–274

    CrossRef  Google Scholar 

  • Gray M (2012) Valuing geodiversity in an “ecosystem services” context. Scott Geogr J 128(3–4):177–119

    Google Scholar 

  • Grierson AJC, Long DG (eds) (1991) Flora of Bhutan, vol 1–3. Royale Botanic Garden, Edinburgh

    Google Scholar 

  • Hajra PK, Verma DM (eds) (1996) Flora of Sikkim. Botanical Survey of India, Calcutta, New Delhi

    Google Scholar 

  • Hjort J, Luoto M (2010) Geodiversity of high-latitude landscapes in northern Finland. Geomorphology 115(1–2):109–116

    Google Scholar 

  • Hjort J, Heikkinen RK, Luoto M (2012) Inclusion of explicit measures of geodiversity improve biodiversity models in a boreal landscape. Biodivers Conserv 21:3487–3506

    CrossRef  Google Scholar 

  • IUCN (2008) Resolutions and recommendations adopted at the 4th IUCN world conservation congress. Resolution 4 040: Conservation of geodiversity and geological heritage [online]. Available at: http://intranet.iucn.org/webfiles/doc/IUCNPolicy/Resolutions/2008_WCC_4/English/RES/res_4_040_conservation_of_geodiversity_and_geological_heritage.pdf

  • Johansson CE, Andersen S, Alapassi M (1999) Geodiversity in the Nordic countries. ProGeo News 1:1–3

    Google Scholar 

  • Johansson CE (ed) (2000) Geodiversitat I Nordisk Naturvård. Copenhagen: Nordisk Ministerråad

    Google Scholar 

  • Karger DN, Conrad O, Böhner J, Kawohl T, Kreft H, Soria-Auza RW, Zimmermann NE, Linder HP, Kessler M (2016) Climatologies at high resolution for the Earth land surface areas. arXiv:1607.00217 [physics]

  • Körner C (2004) Mountain biodiversity, its causes and function. Ambio 13:11–17

    Google Scholar 

  • Kozlowski S (2004) Geodiversity. The concept and scope of geodiversity. Przegl Geol 52(8/2):833–837

    Google Scholar 

  • Manosso FC, Nóbrega MT (2015) Calculation of geodiversity from landscape units oft he Cadeado Range region in Paraná, Brazil. Geoheritage. doi:10.1007/s12371-015-0152-1

  • Mutke J, Barthlott W (2005) Patterns of vascular plant diversity at continental to global scales. Biol Skr 55:521–531

    Google Scholar 

  • Nichols WF, Killingbeck KT, August PV (1998) The influence of geomorphological heterogeneity on biodiversity. II. A landscape perspective. Conserv Biol 12(2):371–379

    CrossRef  Google Scholar 

  • Nieto LM (2001) Geodiversity: proposal of an integrative definition. Bol Geol Min 112(2):3–12

    Google Scholar 

  • Panizza M, Piacente S (2008) La geodiversità e una sua applicazione nel territorio Emiliano. ll Geologo dell’ Emilia-Romagna 29:35–37

    Google Scholar 

  • Parks KE, Mulligan M (2010) On the relationship between a resource based measure of geodiversity and broad scale biodiversity patterns. Biodivers Conserv 19:2751–2766

    CrossRef  Google Scholar 

  • Pellitero R, Manosso FC, Serrano E (2014) Mid and large-scale geodiversity calculation in Fuentes Carrionas (NW Spain) and Serra Do Cadeado (Paraná, Brazil): Methodology and Application for land management. Geogr Ann Series A Phys Geogr 97(2):1–17

    Google Scholar 

  • Pereira DI, Pereira P, Brilha J, Santos L (2013) Geodiversity assessment of Paraná State (Brazil): an innovative approach. Environ Manage 52:541–552

    CrossRef  Google Scholar 

  • Rawat PK, Sharma AK (2012) Geo-diversity and its hydrological response in relation to landslide susceptibility in the Himalaya: a GIS-based case study. Georisk Assess Manage Risk Eng Syst Geohazards 6(4):229–251. doi:10.1080/17499518.2012.739701

    CrossRef  Google Scholar 

  • Räsänen A, Kuitunen M, Hjort J, Vaso A, Kuitunen T, Lensu A (2016) The role of landscape topography, and geodiversity in explaining vascular plant species richness in a fragmented landscape. Boreal Environ Res 21:53–70

    Google Scholar 

  • Richerson PJ, Lum K (1980) Patterns of plant species and diversity in California: relation to weather and topography. Am Nat 116:504–536

    CrossRef  Google Scholar 

  • Roy PS, Behera MD, Murthy MSR, Roy A, Singh S, Kushwaha SPS, Jha CH, Sudhakar S, joshi PK, Reddy CS, Gupta S, Pujar G, Dutt CBS, Srivastava VK, Porwal MC, Tripathi P, Singh JS, Chitale V, Skidmore AK, Rajshekhar G, Kushwaha D, Karnatak H, Saran S, Giriraj A, Padalia H, Kale M, Nandy S, Jeganathan C, Singh CP, Biradar CM, Pattanaik C, Singh DK, Devagiri GM, Talukdar G, Panigrahy RK, Singh H, Sharma JR, Haridasan K, Trivedi S, Singh KP, Kannan L, Daniel M, Misra MK, Niphadkar M, Nagabhatla N, Prasad N, Tripathi OP, Prasad PRC, Dash P, Qureshi Q, Tripathi SK, Ramesh BR, Gowda B, Tomar S, Romshoo S, Giriraj S, Ravan SA, Behera SK, Paul S, Das AK, Ranganath BK, Singh TP, Sahu TR, Shankar U, Menon ARR, Srivastava G, Neeti SS, Mohapatra UB, Peddi A, Rashid H, Salroo I, Krishna PH, Hajra PK, Vergheese AO, Matin S, Chaudhary SA, Ghosh S, Lakshmi U, Rawat D, Ambastha K, Malik AH, Devi BSS, Gowda B, Sharma KC, Mukharjee P, Sharma A, Davidar P, Raju RRV, Katewa SS, Kant S, Raju VS, Uniyal BP, Debnath B, Rout DK, Thapa R, Joseph S, Chhetri P, Ramachandran RM (2015) New vegetation type map of India prepared using satellite remote sensing: comparison with global vegetation maps and utilities. Int J Appl Earth Observ Geoinfo 39:142–159

    Google Scholar 

  • Salick J, Byg A (2007) Indigenous peoples and climate change. A Tyndall Centre Publication, Oxford

    Google Scholar 

  • Samant SS, Dhar U (1997) Diversity, endemism and economic potential of wild edible plants of Indian Himalaya. Int J Sustain Dev World Ecol 4(3):179–191

    CrossRef  Google Scholar 

  • Serrano E, Flaño P (2007) Geodiversity: concept, assessment and territorial application. The case of Tiermes-Caracena. Boletín de la AGE 45:389–393

    Google Scholar 

  • Serrano E, Ruiz-Flaño P (2007b) Geodiversity: a theoretical and applied concept. Geogr Helv 62:140–147

    Google Scholar 

  • Silva JP, Pereira DI, Aguiar AM, Rodrigues C (2013) Geodiversity assessment of the Xingu drainage basin. J Maps 9(2):254–262

    CrossRef  Google Scholar 

  • Singh P, Dash SS (2002) Database on trees of Sikkim Himalaya. J Econ Taxon Bot 26(2):285–310

    Google Scholar 

  • Smith P, Ashmore M, Black H, Burgess P, Evans C, Hails R, Potts SG, Quine T, Thomson A (2011) Regulating services. The UK national ecosystem assessment technical report. UNEP-WCMC, Cambridge, pp 535–596

    Google Scholar 

  • Singh RB, Anand S (2013) Geodiversity, geographical heritage and geoparks in India. Int J Geoheritage 1(1):10–26. www.igu-cog.org

  • SSDMA (2016) Human vulnerability due to natural disaster (2016) http://www.ssdma.nic.in/resources/publications/Inventory%20and%20GIS%20Mapping%20of%20Landslides%20in%20Sikkim.pdf available on 25.11.2016

  • Srinivasan U, Tamma K, Ramakrishnan U (2014) Past climate and species ecology drive nested species richness patterns along an east-west axis in the Himalaya. Glob Ecol Biogeogr 23:52–60

    Google Scholar 

  • Stanley M (2001) Geodiversity strategy. ProGeo News 1:6–9

    Google Scholar 

  • Telwala Y, Brook BW, Manish K, Pandit MK (2013) Climate-induced elevational range shifts and increase in plant species in a Himalayan biodiversity epicentre. PLoS One 8(2):e57103. doi:10.1371/journal.pone.0057103

    CrossRef  CAS  Google Scholar 

  • Xu JC, Wilkes A (2004) Biodiversity impact analysis in northwest Yunnan, Southwest China. Biodivers Conserv 13:959–983

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raunaq Jahan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jahan, R., Schickhoff, U., Böhner, J., Conrad, O. (2018). Quantification of Geodiversity of Sikkim (India) and Its Implications for Conservation and Disaster Risk Reduction Research. In: Mal, S., Singh, R., Huggel, C. (eds) Climate Change, Extreme Events and Disaster Risk Reduction. Sustainable Development Goals Series. Springer, Cham. https://doi.org/10.1007/978-3-319-56469-2_19

Download citation