Skip to main content

Effect of Hydrothermal Processing on Hemicellulose Structure

  • Chapter
  • First Online:
Hydrothermal Processing in Biorefineries

Abstract

Hydrothermal process is a potential technology to convert lignocellulosic resources into biofuels and value-added chemicals in a green fashion. Fractionation of woody biomass allows the exploration of the concept of integrated forestry biorefinery. The hydrolysis of hemicellulose produces oligosaccharides, pentose (xylose and arabinose), hexose (glucose, mannose, and galactose), acids (acetic acid, formic acid, and levulinic acid), and furans (furfural and 5-hydroxymethylfurfural), as well as resulting insoluble humins as by-products under harsh conditions. This chapter highlights recent results on hydrothermal processing of various lignocellulosic biomasses, including fundamentals of hydrothermal pretreatment and mechanistic and kinetic studies in such process, especially in analysis and characterization of hemicelluloses before and after hydrothermal processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Ac:

Acetyl

AcOS:

Acetyl groups bonded to oligosaccharides

AG:

Arabinogalactan

AGX:

Arabinoglucuronoxylan

Ara:

Arabinose

ArOS:

Arabinooligosaccharides

ATR-FTIR:

Attenuated total reflectance Fourier transform infrared spectroscopy

AX:

Arabinoxylan

DP:

Degree of polymerization

FF:

Furfural

FT-IR:

Fourier transform infrared spectroscopy

Gal:

Galactose

GaOS:

Galactooligosaccharides

GGMs:

Galactoglucomannans

Glcp :

Glucopyranosyl

GluA:

Glucuronic acid

GluOS:

Glucooligosaccharides

GM:

Glucomannan

GPC:

Gel permeation chromatography

GX:

Glucuronoxylan

HMF:

5-Hydroxymethylfurfural

HPAEC:

High-performance anion-exchange chromatography

HPLC:

High-performance liquid chromatography

HPSEC:

High-performance size-exclusion chromatography

HSQC:

Heteronuclear single-quantum correlation

LA:

Levulinic acid

LCC:

Lignin–carbohydrate complex

LCMs:

Lignocellulosic materials

LHW:

Liquid hot water

Man:

Mannose

Manp :

Mannopyranosyl

MALDI-TOF MS:

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

MLG:

β-(1→3, 1→4)-glucans

M W :

Weight-average molecular weight

NMR:

Nuclear magnetic resonance spectroscopy

OS:

Oligosaccharides

PAD:

Pulsed amperometric detector

RID:

Refractive index detector

SEC:

Size-exclusion chromatography

SEM:

Scanning electron microscope

TOS:

Total oligosaccharides

X:

Homoxylan

XG:

Xyloglucan

XOS:

Xylooligosaccharides

Xyl:

Xylose

Xylp :

Xylopyranosyl

References

  • Aachary AA, Prapulla SG (2011) Xylooligosaccharides (XOS) as an emerging prebiotic: microbial synthesis, utilization, structural characterization, bioactive properties, and applications. Compr Rev Food Sci Food Saf 10:2–16

    Article  Google Scholar 

  • Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29:675–685

    Article  Google Scholar 

  • Albersheim P, Darvill A, Roberts K, Sederoff R, Staehelin A (2010) Plant cell walls: from biochemistry to biology. Garland Science, New York

    Google Scholar 

  • Alén R (2000) Structure and chemical composition of wood. In: Stenius P (ed) Forest products chemistry, vol 3. Fapet Oy, Helsinki, pp 11–57

    Google Scholar 

  • Allen SG, Kam LC, Zemann AJ, Antal MJ (1996) Fractionation of sugar cane with hot, compressed, liquid water. Ind Eng Chem Res 35:2709–2715

    Article  Google Scholar 

  • Allen SG, Schulman D, Lichwa J, Antal MJ, Jennings E, Elander R (2001) A comparison of aqueous and dilute-acid single-temperature pretreatment of yellow poplar sawdust. Ind Eng Chem Res 40:2352–2361

    Article  Google Scholar 

  • Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861

    Article  Google Scholar 

  • Anwar Z, Gulfraz M, Irshad M (2014) Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: a brief review. J Radiat Res Appl Sci 7:163–173

    Article  Google Scholar 

  • Aoyama M, Seki K (1994) Chemical characterization of solubilized xylan from steamed bamboo grass. Holz als Roh- und Werkstoff 52:388–388

    Article  Google Scholar 

  • Asghari FS, Yoshida H (2007) Kinetics of the decomposition of fructose catalyzed by hydrochloric acid in subcritical water: formation of 5-hydroxymethylfurfural, levulinic, and formic acids. Ind Eng Chem Res 46:7703–7710

    Article  Google Scholar 

  • Balan V, Bals B, Chundawat SS, Marshall D, Dale B (2009) Lignocellulosic biomass pretreatment using AFEX. In: Mielenz JR (ed) Biofuels: methods and protocols. Humana Press, New York, pp 61–77

    Chapter  Google Scholar 

  • Belkacemi K, Abatzoglou N, Overend RP, Chornet E (1991) Phenomenological kinetics of complex systems: mechanistic considerations in the solubilization of hemicelluloses following aqueous/steam treatments. Ind Eng Chem Res 30:2416–2425

    Article  Google Scholar 

  • Biller P, Ross AB (2012) Hydrothermal processing of algal biomass for the production of biofuels and chemicals. Biofuels 3:603–623

    Article  Google Scholar 

  • Blumentritt M, Gardner DJ, Cole BJ, Shaler SM (2016) Influence of hot-water extraction on ultrastructure and distribution of glucomannans and xylans in poplar xylem as detected by gold immunolabeling. Holzforschung 70:243–252

    Article  Google Scholar 

  • Bobleter O, Pape G (1968) Method to degrade wood, bark and other plant materials. Aust patent 263661

    Google Scholar 

  • Bonn G, Concin R, Bobleter O (1983) Hydrothermolysis–a new process for the utilization of biomass. Wood Sci Technol 17:195–202

    Article  Google Scholar 

  • Borrega M, Nieminen K, Sixta H (2011) Degradation kinetics of the main carbohydrates in birch wood during hot water extraction in a batch reactor at elevated temperatures. Bioresour Technol 102:10724–10732

    Article  Google Scholar 

  • Braaten J, Wood P, Scott F, Wolynetz M, Lowe M, Bradley-White P, Collins M (1994) Oat β-glucan reduces blood cholesterol concentration in hypercholesterolemic subjects. Eur J Clin Nutr 48:465–474

    Google Scholar 

  • Brasch D, Free K (1965) Prehydrolysis-kraft pulping of Pinus radiata grown in New Zealand. Tappi 48:245–248

    Google Scholar 

  • Brennan CS, Cleary LJ (2005) The potential use of cereal (1→3,1→4)-β-d-glucans as functional food ingredients. J Cereal Sci 42:1–13

    Article  Google Scholar 

  • Brillouet JM, Joseleau JP, Utille JP, Lelievre D (1982) Isolation, purification and characterization of a complex heteroxylan from industrial wheat bran. J Agric Food Chem 30:488–495

    Article  Google Scholar 

  • Buckeridge MS, Rayon C, Urbanowicz B, Tiné MAS, Carpita NC (2004) Mixed linkage (1→3),(1→4)-β-D-glucans of grasses. Cereal Chem 81:115–127

    Article  Google Scholar 

  • Burton RA, Fincher GB (2009) (1,3;1,4)-β-d-glucans in cell walls of the Poaceae, lower plants, and fungi: a tale of two linkages. Mol Plant 2:873–882

    Article  Google Scholar 

  • Cael SJ, Koenig JL, Blackwell J (1973) Infrared and raman spectroscopy of carbohydrates. Carbohydr Res 29:123–134

    Article  Google Scholar 

  • Cahela DR, Lee Y, Chambers R (1983) Modeling of percolation process in hemicellulose hydrolysis. Biotechnol Bioeng 25:3–17

    Article  Google Scholar 

  • Cantarella M, Cantarella L, Gallifuoco A, Spera A, Alfani F (2004) Effect of inhibitors released during steam-explosion treatment of poplar wood on subsequent enzymatic hydrolysis and SSF. Biotechnol Prog 20:200–206

    Article  Google Scholar 

  • Cara C, Moya M, Ballesteros I, Negro MJ, González A, Ruiz E (2007a) Influence of solid loading on enzymatic hydrolysis of steam exploded or liquid hot water pretreated olive tree biomass. Process Biochem 42:1003–1009

    Article  Google Scholar 

  • Cara C, Romero I, Oliva JM, Sáez F, Castro E (2007b) Liquid hot water pretreatment of olive tree pruning residues. Appl Biochem Biotechnol 137:379–394

    Google Scholar 

  • Cara C, Ruiz E, Carvalheiro F, Moura P, Ballesteros I, Castro E, Gírio F (2012) Production, purification and characterisation of oligosaccharides from olive tree pruning autohydrolysis. Ind Crop Prod 40:225–231

    Article  Google Scholar 

  • Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30

    Article  Google Scholar 

  • Carrasco F, Roy C (1992) Kinetic study of dilute-acid prehydrolysis of xylan-containing biomass. Wood Sci Technol 26:189–208

    Google Scholar 

  • Carrasco F, Chornet E, Overend R, Heitz M (1987) Fractionnement de deux bois tropicaux (Eucalyptus et Wapa) par traitement thermomécanique en phase aqueuse. Partie II: Caractéristiques chimiques des résidus et considérations cinétiques sur la solubilisation des hémicelluloses. Can J Chem Eng 65:71–77

    Article  Google Scholar 

  • Carvalheiro F, Duarte LC, Gírio FM (2008) Hemicellulose biorefineries: a review on biomass pretreatments. J Sci Ind Res 67:849–864

    Google Scholar 

  • Carvalheiro F, Silva-Fernandes T, Duarte LC, Girio FM (2009) Wheat straw autohydrolysis: process optimization and products characterization. Appl Biochem Biotechnol 153:84–93

    Article  Google Scholar 

  • Cavallero A, Empilli S, Brighenti F, Stanca AM (2002) High (1→3,1→4)-β-glucan barley fractions in bread making and their effects on human glycemic response. J Cereal Sci 36:59–66

    Article  Google Scholar 

  • Chen X, Lawoko M, Heiningen A (2010) Kinetics and mechanism of autohydrolysis of hardwoods. Bioresour Technol 101:7812–7819

    Article  Google Scholar 

  • Conner AH (1984) Kinetic modeling of hardwood prehydrolysis. Part I. Xylan removal by water prehydrolysis. Wood Fiber Sci 16:268–277

    Google Scholar 

  • Cybulska I, Brudecki G, Lei H (2013) Hydrothermal pretreatment of lignocellulosic biomass. In: Gu T (ed) Green biomass pretreatment for biofuels production. Springer, Netherlands, pp 87–106

    Chapter  Google Scholar 

  • DeLong EA (1981) Method of rendering lignin separable from cellulose and hemicellulose in lignocellulosic material and the productsoff produced. Can Patent 1:374

    Google Scholar 

  • DeMartini JD, Pattathil S, Avci U, Szekalski K, Mazumder K, Hahn MG, Wyman CE (2011) Application of monoclonal antibodies to investigate plant cell wall deconstruction for biofuels production. Energ Environ Sci 4:4332–4339

    Article  Google Scholar 

  • DeMartini JD, Pattathil S, Miller JS, Li H, Hahn MG, Wyman CE (2013) Investigating plant cell wall components that affect biomass recalcitrance in poplar and switchgrass. Energ Environ Sci 6:898–909

    Article  Google Scholar 

  • Diaz MJ, Cara C, Ruiz E, Romero I, Moya M, Castro E (2010) Hydrothermal pre-treatment of rapeseed straw. Bioresour Technol 101:2428–2435

    Article  Google Scholar 

  • Donohoe BS, Decker SR, Tucker MP, Himmel ME, Vinzant TB (2008) Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment. Biotechnol Bioeng 101:913–925

    Article  Google Scholar 

  • Duchesne I, Hult E, Molin U, Daniel G, Iversen T, Lennholm H (2001) The influence of hemicellulose on fibril aggregation of kraft pulp fibres as revealed by FE-SEM and CP/MAS 13C-NMR. Cellul 8:103–111

    Article  Google Scholar 

  • Dunlop AP (1948) Furfural formation and behavior. Ind Eng Chem 40:204–209

    Article  Google Scholar 

  • Ebringerová A (2005) Structural diversity and application potential of hemicelluloses. Macromol Symp 232:1–12

    Article  Google Scholar 

  • Ebringerova A, Heinze T (2000) Xylan and xylan derivatives–biopolymers with valuable properties, 1. Naturally occurring xylans structures, isolation procedures and properties. Macromol Rapid Commun 21:542–556

    Article  Google Scholar 

  • Ebringerová A, Hromádková Z, Heinze T (2005) Hemicellulose. In: Heinze T (ed) Polysaccharides I: structure, characterization and use. Springer, Heidelberg, pp 1–67

    Chapter  Google Scholar 

  • Edashige Y, Ishii T (1998) Hemicellulosic polysaccharides from bamboo shoot cell-walls. Phytochemistry 49:1675–1682

    Article  Google Scholar 

  • Elliott DC (2011) Hydrothermal processing. In: Brown RC (ed) Thermochemical processing of biomass: conversion into fuels, chemical and power. Wiley, Chichester, pp 200–231

    Chapter  Google Scholar 

  • Erickson RF (1970) Continuous aqueous prehydrolysis of wood chips. US Patent 3,530,034

    Google Scholar 

  • Esteghlalian A, Hashimoto AG, Fenske JJ, Penner MH (1997) Modeling and optimization of the dilute-sulfuric-acid pretreatment of corn stover, poplar and switchgrass. Bioresour Technol 59:129–136

    Article  Google Scholar 

  • Ewanick S, Bura R (2010) Hydrothermal pretreatment of lignocellulosic biomass. In: Waldron K (ed) Bioalcohol production: biochemical conversion of lignocellulosic biomass. Woodhead Publishing, Cambridge, pp 3–23

    Chapter  Google Scholar 

  • Ewanick SM, Bura R, Saddler JN (2007) Acid-catalyzed steam pretreatment of lodgepole pine and subsequent enzymatic hydrolysis and fermentation to ethanol. Biotechnol Bioeng 98:737–746

    Article  Google Scholar 

  • Fazilah A, Mohd Azemi MN, Karim AA, Norakma MN (2009) Physicochemical properties of hydrothermally treated hemicellulose from oil palm frond. J Agric Food Chem 57:1527–1531

    Article  Google Scholar 

  • Fengel D, Wegener G (1983) Wood: chemistry, ultrastructure, reactions. De Gruyter, Berlin

    Book  Google Scholar 

  • Ferreira-Leitão V, Perrone C, Rodrigues J, Franke A, Macrelli S, Zacchi G (2010) An approach to the utilisation of CO2 as impregnating agent in steam pretreatment of sugar cane bagasse and leaves for ethanol production. Biotechnol Biofuels 3:7

    Article  Google Scholar 

  • Fitzpatrick A, Roberts A, Witherly S (2004) Larch arabinogalactan: a novel and multifunctional natural product. Agro Food Ind Hi Tech 15:30–32

    Google Scholar 

  • Galbe M, Sassner P, Wingren A, Zacchi G (2007) Process engineering economics of bioethanol production. Adv Biochem Eng Biotechnol 108:3003–3327

    Google Scholar 

  • Garrote G, Parajó CJ (2002b) Non-isothermal autohydrolysis of Eucalyptus wood. Wood Sci Technol 36:111–123

    Article  Google Scholar 

  • Garrote G, Domínguez H, Parajó JC (1999a) Hydrothermal processing of lignocellulosic materials. Holz als Roh- und Werkstoff 57:191–202

    Article  Google Scholar 

  • Garrote G, Domínguez H, Parajó JC (1999b) Mild autohydrolysis: an environmentally friendly technology for xylooligosaccharide production from wood. J Chem Technol Biotechnol 74:1101–1109

    Article  Google Scholar 

  • Garrote G, Dominguez H, Parajo J (2001) Study on the deacetylation of hemicelluloses during the hydrothermal processing of Eucalyptus wood. Holz Als Roh-und Werkst 59:53–59

    Article  Google Scholar 

  • Garrote G, Domınguez H, Parajó JC (2002a) Autohydrolysis of corncob: study of non-isothermal operation for xylooligosaccharide production. J Food Eng 52:211–218

    Article  Google Scholar 

  • Goh CS, Lee KT, Bhatia S (2010) Hot compressed water pretreatment of oil palm fronds to enhance glucose recovery for production of second generation bio-ethanol. Bioresour Technol 101:7362–7367

    Article  Google Scholar 

  • Goh CS, Tan HT, Lee KT (2012) Pretreatment of oil palm frond using hot compressed water: an evaluation of compositional changes and pulp digestibility using severity factors. Bioresour Technol 110:662–669

    Article  Google Scholar 

  • Gong C, Cao N, Du J, Tsao G (1999) Ethanol production from renewable resources. Adv Biochem Eng Biotechnol 65:207–241

    Google Scholar 

  • Griebl A, Lange T, Weber H, Milacher W, Sixta H (2005) Xylo-oligosaccharide (XOS) formation through hydrothermolysis of xylan derived from viscose process. Macromol Symp 232:107–120

    Article  Google Scholar 

  • Gullon P, Pereiro G, Alonso JL, Parajo JC (2009) Aqueous pretreatment of agricultural wastes: characterization of soluble reaction products. Bioresour Technol 100:5840–5845

    Article  Google Scholar 

  • Gullón B, Yáñez R, Alonso J, Parajó J (2010) Production of oligosaccharides and sugars from rye straw: a kinetic approach. Bioresour Technol 101:6676–6684

    Article  Google Scholar 

  • Gullón P, González-Muñoz MJ, van Gool MP, Schols HA, Hirsch J, Ebringerová A, Parajó JC (2011) Structural features and properties of soluble products derived from Eucalyptus globulus hemicelluloses. Food Chem 127:1798–1807

    Article  Google Scholar 

  • Gupta S, Madan RN, Bansal MC (1987) Chemical-composition of Pinus caribaea hemicellulose. Tappi J 70:113–114

    Google Scholar 

  • Gütsch JS, Nousiainen T, Sixta H (2012) Comparative evaluation of autohydrolysis and acid-catalyzed hydrolysis of Eucalyptus globulus wood. Bioresour Technol 109:77–85

    Article  Google Scholar 

  • Hallac BB (2011) Fundamental understanding of the biochemical conversion of Buddleja davidii to fermentable sugars. Doctoral dissertation, Georgia Institute of Technology

    Google Scholar 

  • Hannuksela T, Hervé du Penhoat C (2004) NMR structural determination of dissolved O-acetylated galactoglucomannan isolated from spruce thermomechanical pulp. Carbohydr Res 339:301–312

    Article  Google Scholar 

  • Hansen M, Hidayat B, Mogensen K, Jeppesen M, Jorgensen B, Johansen K, Thygesen L (2013) Enzyme affinity to cell types in wheat straw (Triticum aestivum L.) before and after hydrothermal pretreatment. Biotechnol Biofuels 6:54

    Article  Google Scholar 

  • Harris JF (1975) Acid hydrolysis and dehydration reactions for utilizing plant carbohydrates. Appl Polym Symp 28:131–144

    Google Scholar 

  • Harris P, Henry R (2005) Diversity in plant cell walls. In: Henry RJ (ed) Plant diversity and evolution: genotypic and phenotypic variation in higher plants. CAB International Publishing, Wallingford, pp 201–227

    Chapter  Google Scholar 

  • Harris PJ, Smith BG (2006) Plant cell walls and cell-wall polysaccharides: structures, properties and uses in food products. Int J Food Sci Technol 41:129–143

    Article  Google Scholar 

  • He W, Li G, Kong L, Wang H, Huang J, Xu J (2008) Application of hydrothermal reaction in resource recovery of organic wastes. Resour Conserv Recycl 52:691–699

    Article  Google Scholar 

  • Heinze T, Daus S (2011) Xylan and xylan derivatives –Basis of functional polymers for the future. In: Williams PA (ed) Renewable resources for functional polymers and biomaterials. The Royal Society of Chemistry, Cambridge, pp 88–129

    Chapter  Google Scholar 

  • Heitz M, Carrasco F, Rubio M, Chauvette G, Chornet E, Jaulin L, Overend R (1986) Generalized correlations for the aqueous liquefaction of lignocellulosics. Can J Chem Eng 64:647–650

    Article  Google Scholar 

  • Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807

    Article  Google Scholar 

  • Hoch G (2007) Cell wall hemicelluloses as mobile carbon stores in non-reproductive plant tissues. Funct Ecol 21:823–834

    Article  Google Scholar 

  • Holopainen-Mantila U, Marjamaa K, Merali Z, Käsper A, de Bot P, Jääskeläinen A-S, Waldron K, Kruus K, Tamminen T (2013) Impact of hydrothermal pre-treatment to chemical composition, enzymatic digestibility and spatial distribution of cell wall polymers. Bioresour Technol 138:156–162

    Article  Google Scholar 

  • Hörmeyer H, Schwald W, Bonn G, Bobleter O (1988) Hydrothermolysis of birch wood as pretreatment for enzymatic saccharification. Holzforschung 42:95–98

    Article  Google Scholar 

  • Horvat J, Klaić B, Metelko B, Šunjić V (1985) Mechanism of levulinic acid formation. Tetrahedron Lett 26:2111–2114

    Article  Google Scholar 

  • Hu Z, Ragauskas AJ (2011) Hydrothermal pretreatment of switchgrass. Ind Eng Chem Res 50:4225–4230

    Article  Google Scholar 

  • Huijgen WJJ, Smit AT, de Wild PJ, den Uil H (2012) Fractionation of wheat straw by prehydrolysis, organosolv delignification and enzymatic hydrolysis for production of sugars and lignin. Bioresour Technol 114:389–398

    Article  Google Scholar 

  • Ibbett R, Gaddipati S, Davies S, Hill S, Tucker G (2011) The mechanisms of hydrothermal deconstruction of lignocellulose: new insights from thermal-analytical and complementary studies. Bioresour Technol 102:9272–9927

    Article  Google Scholar 

  • Ibbett R, Gaddipati S, Hill S, Tucker G (2013) Structural reorganisation of cellulose fibrils in hydrothermally deconstructed lignocellulosic biomass and relationships with enzyme digestibility. Biotechnol Biofuels 6:33

    Google Scholar 

  • Imman S, Arnthong J, Burapatana V, Laosiripojana N, Champreda V (2013) Autohydrolysis of tropical agricultural residues by compressed liquid hot water pretreatment. Appl Biochem Biotechnol 170:1982–1995

    Article  Google Scholar 

  • Ingram T, Rogalinski T, Bockemühl V, Antranikian G, Brunner G (2009) Semi-continuous liquid hot water pretreatment of rye straw. J Supercrit Fluids 48:238–246

    Article  Google Scholar 

  • Inoue H, Yano S, Endo T, Sakaki T, Sawayama S (2008) Combining hot-compressed water and ball milling pretreatments to improve the efficiency of the enzymatic hydrolysis of eucalyptus. Biotechnol Biofuels 1:2

    Article  Google Scholar 

  • Ishii T (1991) Acetylation at O-2 of arabinofuranose residues in feruloylated arabinoxylan from bamboo shoot cell-walls. Phytochemistry 30:2317–2320

    Article  Google Scholar 

  • Jedicke O, Eisenreich N, Dümpert H (2000) Aquasolv®-Hydrothermolyse. The development of a process for completely use of biomass. In: Proceedings of the first biomass world conference, Sevilla, Spain, 2000

    Google Scholar 

  • Jensen J, Morinelly J, Aglan A, Mix A, Shonnard DR (2008) Kinetic characterization of biomass dilute sulfuric acid hydrolysis: mixtures of hardwoods, softwood, and switchgrass. AlChE J 54:1637–1645

    Article  Google Scholar 

  • Johnson DK, Elander RT (2009) Pretreatments for enhanced digestibility of feedstocks. In: Himmel ME (ed) Biomass recalcitrance: deconstructing the plant cell wall for bioenergy. Blackwell, London, pp 436–453

    Google Scholar 

  • Josefsson T, Lennholm H, Gellerstedt G (2002) Steam explosion of aspen wood. Characterisation of reaction products. Holzforschung 56:289–297

    Article  Google Scholar 

  • Jung C-D, Yu J-H, Eom I-Y, Hong K-S (2013) Sugar yields from sunflower stalks treated by hydrothermolysis and subsequent enzymatic hydrolysis. Bioresour Technol 138:1–7

    Article  Google Scholar 

  • Kabel M, Schols H, Voragen A (2002) Complex xylo-oligosaccharides identified from hydrothermally treated Eucalyptus wood and brewery’s spent grain. Carbohydr Polym 50:191–200

    Article  Google Scholar 

  • Kabel MA, Schols HA, Voragen AGJ. (2003) Identification of structural features of various (O-acetylated) xylo-oligosaccharides from xylan-rich agricultural by-products: a review. In: Proceedings of the ACS Symposium Series, vol 864. American Chemical Society, pp 108–121

    Google Scholar 

  • Kabel MA, Bos G, Zeevalking J, Voragen AG, Schols HA (2007) Effect of pretreatment severity on xylan solubility and enzymatic breakdown of the remaining cellulose from wheat straw. Bioresour Technol 98:2034–2042

    Article  Google Scholar 

  • Kačuráková M, Ebringerová A, Hirsch J, Hromádková Z (1994) Infrared study of arabinoxylans. J Sci Food Agric 66:423–427

    Article  Google Scholar 

  • Kac̆uráková M, Wellner NP, Sasinková V, Wellner N, Ebringerová A (2000) FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohydr Polym 43:195–203

    Article  Google Scholar 

  • Keegstra K, Walton J (2006) β-Glucans—brewer’s bane, dietician’s delight. Science 311:1872–1873

    Article  Google Scholar 

  • Kim JS, Daniel G (2012) Immunolocalization of hemicelluloses in Arabidopsis thaliana stem. Part I: temporal and spatial distribution of xylans. Planta 236:1275–1288

    Article  Google Scholar 

  • Kim H, Ralph J (2010) Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-d 6/pyridine-d 5. Org Biomol Chem 8:576–591

    Article  Google Scholar 

  • Kim H, Ralph J, Akiyama T (2008) Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-d 6. Bioenergy Res 1:56–66

    Article  Google Scholar 

  • Kim Y, Mosier N, Ladisch M (2009a) Enzymatic digestion of liquid hot water pretreated hybrid poplar. Biotechnol Prog 25:340–348

    Article  Google Scholar 

  • Kim Y, Hendrickson R, Mosier NS, Ladisch MR (2009b) Liquid hot water pretreatment of cellulosic biomass. In: Mielenz JR (ed) Methods in molecular biology: biofuels, vol 581. Humana, Totowa, pp 93–102

    Google Scholar 

  • Kim DS, Myint AA, Lee HW, Yoon J, Lee Y-W (2013) Evaluation of hot compressed water pretreatment and enzymatic saccharification of tulip tree sawdust using severity factors. Bioresour Technol 44:460–466

    Article  Google Scholar 

  • Kim Y, Kreke T, Mosier NS, Ladisch MR (2014) Severity factor coefficients for subcritical liquid hot water pretreatment of hardwood chips. Biotechnol Bioeng 111:254–263

    Article  Google Scholar 

  • Kim Y, Kreke T, Ko JK, Ladisch MR (2015) Hydrolysis-determining substrate characteristics in liquid hot water pretreated hardwood. Biotechnol Bioeng 112:677–687

    Article  Google Scholar 

  • Ko JK, Kim Y, Ximenes E, Ladisch MR (2015) Effect of liquid hot water pretreatment severity on properties of hardwood lignin and enzymatic hydrolysis of cellulose. Biotechnol Bioeng:112252–112262

    Google Scholar 

  • Kobayashi T, Sakai Y (1956) Hydrolysis rate of pentosan of hardwood in dilute sulfuric acid. Bull Agric Chem Soc Jpn 20:1–7

    Article  Google Scholar 

  • Kokta B (1989) Process for preparing pulp for paper making. US Patent 4,798,651

    Google Scholar 

  • Kont R, Kurasin M, Teugjas H, Valjamae P (2013) Strong cellulase inhibitors from the hydrothermal pretreatment of wheat straw. Biotechnol Biofuels 6:135

    Article  Google Scholar 

  • Kristensen JB, Thygesen LG, Felby C, Jørgensen H, Elder T (2008) Cell-wall structural changes in wheat straw pretreated for bioethanol production. Biotechnol Biofuels 1:5

    Article  Google Scholar 

  • Kruse A, Gawlik A (2003) Biomass conversion in water at 330−410 °C and 30−50 MPa. Identification of key compounds for indicating different chemical reaction pathways. Ind Eng Chem Res 42:267–279

    Article  Google Scholar 

  • Kubikova J, PING L, Zemann A, Krkoska P, Bobleter O (2000) Aquasolv pretreatment of plant materials for the production of cellulose and paper. Cell Chem Technol 34:151–162

    Google Scholar 

  • Kulkarni AR, Pattathil S, Hahn MG, York WS, O’Neill MA (2012) Comparison of arabinoxylan structure in bioenergy and model grasses. Ind Biotechnol 8:222–229

    Article  Google Scholar 

  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729

    Article  Google Scholar 

  • Kumar S, Kothari U, Kong L, Lee Y, Gupta RB (2011) Hydrothermal pretreatment of switchgrass and corn stover for production of ethanol and carbon microspheres. Biomass Bioenergy 35:956–968

    Article  Google Scholar 

  • Laine C (2005) Structures of hemicelluloses and pectins in wood and pulp. Doctoral dissertation, Helsinki University of Technology

    Google Scholar 

  • Laser M, Schulman D, Allen SG, Lichwa J, Antal MJ Jr, Lynd LR (2002) A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol. Bioresour Technol 81:33–44

    Article  Google Scholar 

  • Lee YC (1990) High-performance anion-exchange chromatography for carbohydrate analysis. Anal Biochem 189:151–162

    Article  Google Scholar 

  • Lee YC (1996) Carbohydrate analyses with high-performance anion-exchange chromatography. J Chromatogr A 720:137–149

    Article  Google Scholar 

  • Lee JM, Shi J, Venditti RA, Jameel H (2009) Autohydrolysis pretreatment of Coastal Bermuda grass for increased enzyme hydrolysis. Bioresour Technol 100:6434–6441

    Article  Google Scholar 

  • Leschinsky M, Zuckerstätter G, Weber HK, Patt R, Sixta H (2008a) Effect of autohydrolysis of Eucalyptus globulus wood on lignin structure. Part 1: comparison of different lignin fractions formed during water prehydrolysis. Holzforschung 62:645–652

    Google Scholar 

  • Leschinsky M, Zuckerstätter G, Weber HK, Patt R, Sixta H (2008b) Effect of autohydrolysis of Eucalyptus globulus wood on lignin structure. Part 2: influence of autohydrolysis intensity. Holzforschung 62:653–658

    Google Scholar 

  • Leschinsky M, Sixta H, Patt R (2009) Detailed mass balances of the autohydrolysis of Eucalyptus globulus at 170 °C. BioResources 4:687–703

    Google Scholar 

  • Li X, Converse AO, Wyman CE (2003) Characterization of molecular weight distribution of oligomers from autocatalyzed batch hydrolysis of xylan. Appl Biochem Biotechnol 107:515–522

    Article  Google Scholar 

  • Li X, Ximenes E, Kim Y, Slininger M, Meilan R, Ladisch M, Chapple C (2010) Lignin monomer composition affects Arabidopsis cell-wall degradability after liquid hot water pretreatment. Biotechnol Biofuels 3:27

    Article  Google Scholar 

  • Li H, Pu Y, Kumar R, Ragauskas AJ, Wyman CE (2014) Investigation of lignin deposition on cellulose during hydrothermal pretreatment, its effect on cellulose hydrolysis, and underlying mechanisms. Biotechnol Bioeng 111:485–492

    Article  Google Scholar 

  • Liu S (2010) Woody biomass: niche position as a source of sustainable renewable chemicals and energy and kinetics of hot-water extraction/hydrolysis. Biotechnol Adv 28:563–582

    Article  Google Scholar 

  • Liu C, Wyman CE (2003) The effect of flow rate of compressed hot water on xylan, lignin, and total mass removal from corn stover. Ind Eng Chem Res 42:5409–5416

    Article  Google Scholar 

  • Liu X, Lu M, Ai N, Yu F, Ji J (2012) Kinetic model analysis of dilute sulfuric acid-catalyzed hemicellulose hydrolysis in sweet sorghum bagasse for xylose production. Ind Crop Prod 38:81–86

    Article  Google Scholar 

  • Loppinet-Serani A, Aymonier C, Cansell F (2010) Supercritical water for environmental technologies. J Chem Technol Biotechnol 85:583–589

    Article  Google Scholar 

  • Lora JH, Wayman M (1978) Delignification of hardwoods by autohydrolysis and extraction. Tappi J 61:47–50

    Google Scholar 

  • Lu Y, Mosier NS (2008) Kinetic modeling analysis of maleic acid-catalyzed hemicellulose hydrolysis in corn stover. Biotechnol Bioeng 101:1170–1181

    Google Scholar 

  • Ma XJ, Yang XF, Zheng X, Lin L, Chen LH, Huang LL, Cao SL (2014) Degradation and dissolution of hemicelluloses during bamboo hydrothermal pretreatment. Bioresour Technol 161:215–220

    Article  Google Scholar 

  • Ma J, Ji Z, Chen JC, Zhou X, Kim YS, Xu F (2015) The mechanism of xylans removal during hydrothermal pretreatment of poplar fibers investigated by immunogold labeling. Planta 242:327–337

    Article  Google Scholar 

  • Mäki-Arvela PI, Salmi T, Holmbom B, Willför S, Murzin DY (2011) Synthesis of sugars by hydrolysis of hemicelluloses-a review. Chem Rev 111:5638–5666

    Article  Google Scholar 

  • Maloney MT, Chapman TW, Baker AJ (1985) Dilute acid hydrolysis of paper birch: kinetics studies of xylan and acetyl-group hydrolysis. Biotechnol Bioeng 27:355–361

    Article  Google Scholar 

  • Mamman AS, Lee JM, Kim YC, Hwang IT, Park NJ, Hwang YK, Chang JS, Hwang JS (2008) Furfural: hemicellulose/xylosederived biochemical. Biofuels Bioprod Biorefin 2:438–454

    Article  Google Scholar 

  • Mason W (1928) Apparatus for the process of explosion fibration of lignocellulose material. US Patent 1655618

    Google Scholar 

  • Mazumder K, York WS (2010) Structural analysis of arabinoxylans isolated from ball-milled switchgrass biomass. Carbohydr Res 345:2183–2193

    Article  Google Scholar 

  • McCleary BV, Codd R (1991) Measurement of (1→3),(1→4)-β-D-glucan in barley and oats: A streamlined enzymic procedure. J Sci Food Agric 55:303–312

    Google Scholar 

  • McKibbins SW, Harris JF, Saeman JF, Neill WK (1962) Kinetics of the acid catalyzed conversion of glucose to 5-hydroxymethyl-2-furaldehyde and levulinic acid. Forest Prod J 12:17–23

    Google Scholar 

  • McMillan JD (1994) Pretreatment of lignocellulosic biomass. In: Himmel ME, Baker JO, Overend RP (eds) Conversion of hemicellulose hydrolyzates to ethanol. ACS Symposium, Washington, pp 292–324

    Google Scholar 

  • Meier H (1985) Localization of polysaccharides in wood cell walls. In: Higuchi T (ed) Biosynthesis and biodegradation of wood components. Academic, New York, pp 43–50

    Chapter  Google Scholar 

  • Mellinger-Silva C, Simas-Tosin FF, Schiavini DN, Werner MF, Baggio CH, Pereira IT, da Silva LM, Gorin PAJ, Iacomini M (2011) Isolation of a gastroprotective arabinoxylan from sugarcane bagasse. Bioresour Technol 102:10524–10528

    Article  Google Scholar 

  • Mendes CVT, Baptista C, Rocha JMS, Carvalho M (2009) Prehydrolysis of Eucalyptus globulus Labill. hemicelluloses prior to pulping and fermentation of the hydrolysates with the yeast Pichia stipitis. Holzforschung 63:737–743

    Article  Google Scholar 

  • Mittal A, Chatterjee SG, Scott GM, Amidon TE (2009) Modeling xylan solubilization during autohydrolysis of sugar maple wood meal: reaction kinetics. Holzforschung 63:307–314

    Article  Google Scholar 

  • Mok WSL, Antal MJ Jr (1992) Uncatalyzed solvolysis of whole biomass hemicellulose by hot compressed liquid water. Ind Eng Chem Res 31:1157–1161

    Article  Google Scholar 

  • Möller M, Nilges P, Harnisch F, Schröder U (2011) Subcritical water as reaction environment: fundamentals of hydrothermal biomass transformation. ChemSusChem 4:566–579

    Article  Google Scholar 

  • Mosier NS (2013) Fundamental of aqueous pretreatment of biomass. In: Wyman CE (ed) Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals. Wiley, Weinheim, pp 129–140

    Chapter  Google Scholar 

  • Mosier N, Hendrickson R, Ho N, Sedlak M, Ladisch MR (2005a) Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresour Technol 96:1986–1993

    Article  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee Y, Holtzapple M, Ladisch M (2005b) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  Google Scholar 

  • Moure A, Gullón P, Domínguez H, Parajó JC (2006) Advances in the manufacture, purification and applications of xylo-oligosaccharides as food additives and nutraceuticals. Process Biochem 41:1913–1923

    Article  Google Scholar 

  • Muzamal M, Jedvert K, Theliander H, Rasmuson A (2015) Structural changes in spruce wood during different steps of steam explosion pretreatment. Holzforschung 69:61–66

    Article  Google Scholar 

  • Negahdar L, Delidovich I, Palkovits R (2016) Aqueous-phase hydrolysis of cellulose and hemicelluloses over molecular acidic catalysts: insights into the kinetics and reaction mechanism. Appl Catal Environ 184:285–298

    Article  Google Scholar 

  • Negro MJ, Manzanares P, Ballesteros I, Oliva JM, Cabañas A, Ballesteros M (2003) Hydrothermal pretreatment conditions to enhance ethanol production from poplar biomass. Appl Biochem Biotechnol 105:87–100

    Article  Google Scholar 

  • Nguyen Q (1989) Continuous leaching of lignin or hemicellulose and lignin from steam pretreated lignocellulosic particulate material. Can Patent 1322366

    Google Scholar 

  • Nitsos CK, Matis KA, Triantafyllidis KS (2013) Optimization of hydrothermal pretreatment of lignocellulosic biomass in the bioethanol production process. ChemSusChem 6:110–122

    Article  Google Scholar 

  • Nitsos CK, Choli-Papadopoulou T, Matis KA, Triantafyllidis KS (2016) Optimization of hydrothermal pretreatment of hardwood and softwood lignocellulosic residues for selective hemicellulose recovery and improved cellulose enzymatic hydrolysis. ACS Sustain Chem Eng 4:4529–4544

    Article  Google Scholar 

  • O’Hara IM, Zhang Z, Doherty WO, Fellows CM (2011) Lignocellulosics as a renewable feedstock for chemical industry: chemical hydrolysis and pretreatment processes. In: Sanghi R, Singh V (eds) Green chemistry for environmental remediation. Wiley, Hoboken, pp 505–560

    Google Scholar 

  • Ohara H, Owaki M, Sonomoto K (2006) Xylooligosaccharide fermentation with Leuconostoc lactis. J Biosci Bioeng 101:415–420

    Article  Google Scholar 

  • Oliva JM, Sáez F, Ballesteros I, González A, Negro MJ, Manzanares P, Ballesteros M (2003) Effect of lignocellulosic degradation compounds from steam explosion pretreatment on ethanol fermentation by thermotolerant yeast Kluyveromyces marxianus. Appl Biochem Biotechnol 105–108:141–153

    Article  Google Scholar 

  • Ortwin B (1994) Hydrothermal degradation of polymers derived from plants. Prog Polym Sci 19:797–841

    Article  Google Scholar 

  • Overend RP, Chornet E, Gascoigne JA (1987) Fractionation of lignocellulosics by steam-aqueous pretreatments. Philos Trans Soc A 321:523–536

    Article  Google Scholar 

  • Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33

    Article  Google Scholar 

  • Parajó J, Garrote G, Cruz J, Dominguez H (2004) Production of xylooligosaccharides by autohydrolysis of lignocellulosic materials. Trends Food Sci Technol 15:115–120

    Article  Google Scholar 

  • Patil SK, Lund CR (2011) Formation and growth of humins via aldol addition and condensation during acid-catalyzed conversion of 5-hydroxymethylfurfural. Energy Fuel 25:4745–4755

    Article  Google Scholar 

  • Patil SK, Heltzel J, Lund CR (2012) Comparison of structural features of humins formed catalytically from glucose, fructose, and 5-hydroxymethylfurfuraldehyde. Energy Fuel 26:5281–5293

    Article  Google Scholar 

  • Pattathil S, Avci U, Zhang T, Cardenas C, Hahn M (2015) Immunological approaches to biomass characterization and utilization. Front Bioeng Biotechnol 3:173

    Article  Google Scholar 

  • Pauly M, Albersheim P, Darvill A, York WS (1999) Molecular domains of the cellulose/xyloglucan network in the cell walls of higher plants. Plant J 20:629–639

    Article  Google Scholar 

  • Pauly M, Gille S, Liu L, Mansoori N, Souza A, Schultink A, Xiong G (2013) Hemicellulose biosynthesis. Planta 238:627–642

    Article  Google Scholar 

  • Peng P, She D (2014) Isolation, structural characterization, and potential applications of hemicelluloses from bamboo: a review. Carbohydr Polym 112:701–720

    Article  Google Scholar 

  • Peng F, Ren JL, Xu F, Bian J, Peng P, Sun RC (2009) Comparative study of hemicelluloses obtained by graded ethanol precipitation from sugarcane bagasse. J Agric Food Chem 57:6305–6317

    Article  Google Scholar 

  • Peng P, Peng F, Bian J, Xu F, Sun R (2011) Studies on the starch and hemicelluloses fractionated by graded ethanol precipitation from bamboo Phyllostachys bambusoides f. shouzhu Yi. J Agric Food Chem 59:2680–2688

    Article  Google Scholar 

  • Peng F, Peng P, Xu F, Sun RC (2012) Fractional purification and bioconversion of hemicelluloses. Biotechnol Adv 30:879–903

    Article  Google Scholar 

  • Pereira H, Graça J, Rodrigues JC (2003) Wood chemistry in relation to quality. In: Barnett JR, Jeronimidis G (eds) Wood quality and its biological basis. Blackwell, Oxford, pp 53–86

    Google Scholar 

  • Pérez JA, González A, Oliva JM, Ballesteros I, Manzanares P (2007) Effect of process variables on liquid hot water pretreatment of wheat straw for bioconversion to fuel-ethanol in a batch reactor. J Chem Technol Biotechnol 82:929–938

    Article  Google Scholar 

  • Pérez J, Ballesteros I, Ballesteros M, Sáez F, Negro M, Manzanares P (2008) Optimizing liquid hot water pretreatment conditions to enhance sugar recovery from wheat straw for fuel-ethanol production. Fuel 87:3640–3647

    Article  Google Scholar 

  • Persson T, Dinh E, Jönsson AS (2009) Improvement of arabinoxylan isolation from barley husks. Food Bioprod Process 87:228–233

    Article  Google Scholar 

  • Peterson AA, Vogel F, Lachance RP, Fröling M, Antal JMJ, Tester JW (2008) Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies. Energ Environ Sci 1:32–65

    Article  Google Scholar 

  • Pielhop T, Larrazabal GO, Studer MH, Brethauer S, Seidel C-M, Rudolf von Rohr P (2015) Lignin repolymerisation in spruce autohydrolysis pretreatment increases cellulase deactivation. Green Chem 17:3521–3532

    Google Scholar 

  • Pińkowska H, Wolak P, Złocińska A (2011) Hydrothermal decomposition of xylan as a model substance for plant biomass waste–hydrothermolysis in subcritical water. Biomass Bioenergy 35:3902–3912

    Article  Google Scholar 

  • Pińkowska H, Wolak P, Oliveros E (2014) Hydrothermolysis of rapeseed cake in subcritical water. Effect of reaction temperature and holding time on product composition. Biomass Bioenergy 64:50–61

    Article  Google Scholar 

  • Popper ZA, Fry SC (2004) Primary cell wall composition of pteridophytes and spermatophytes. New Phytol 164:165–174

    Article  Google Scholar 

  • Pu Y, Hu F, Huang F, Davison BH, Ragauskas AJ (2013) Assessing the molecular structure basis for biomass recalcitrance during dilute acid and hydrothermal pretreatments. Biotechnol Biofuels 6:15

    Article  Google Scholar 

  • Qing Q, Li H, Kumar R, Wyman CE (2013) Xylooligosaccharides production, quantification, and characterization in context of lignocellulosic biomass pretreatment. In: Wyman CE (ed) Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals. Wiley, Weinheim, pp 391–415

    Chapter  Google Scholar 

  • Rabemanolontsoa H, Saka S (2016) Various pretreatments of lignocellulosics. Bioresour Technol 199:83–91

    Article  Google Scholar 

  • Ragauskas AJ, Nagy M, Kim DH, Eckert CA, Hallett JP, Liotta CL (2006) From wood to fuels: Integrating biofuels and pulp production. Ind Biotechnol 2:55–65

    Article  Google Scholar 

  • Ramos LP (2003) The chemistry involved in the steam treatment of lignocellulosic materials. Quim Nova 26:863–871

    Article  Google Scholar 

  • Rao MS, Muralikrishna G (2001) Non-starch polysaccharides and bound phenolic acids from native and malted finger millet (Ragi, Eleusine coracana, Indaf-15). Food Chem 72:187–192

    Article  Google Scholar 

  • Requejo A, Peleteiro S, Rodríguez A, Garrote G, Parajó JC (2012) Valorization of residual woody biomass (Olea europaea trimmings) based on aqueous fractionation. J Chem Technol Biotechnol 87:87–94

    Article  Google Scholar 

  • Richter GA (1956) Some aspects of prehydrolysis pulping. Tappi 39:193–210

    Google Scholar 

  • Rocha GM, Silva VN, Martín C, Gonçalves A, Nascimento V, Souto-Maior A (2013) Effect of xylan and lignin removal by hydrothermal pretreatment on enzymatic conversion of sugarcane bagasse cellulose for second generation ethanol production. Sugar Tech 15:390–398

    Article  Google Scholar 

  • Rohowsky B, Häßler T, Gladis A, Remmele E, Schieder D, Faulstich M (2012) Feasibility of simultaneous saccharification and juice co-fermentation on hydrothermal pretreated sweet sorghum bagasse for ethanol production. Appl Energy 102:211–219

    Article  Google Scholar 

  • Romaní A, Garrote G, Alonso JL, Parajó JC (2010) Bioethanol production from hydrothermally pretreated Eucalyptus globulus wood. Bioresour Technol 101:8706–8712

    Article  Google Scholar 

  • Romani A, Garrote G, Lopez F, Parajo JC (2011) Eucalyptus globulus wood fractionation by autohydrolysis and organosolv delignification. Bioresour Technol 102:5896–5904

    Article  Google Scholar 

  • Romaní A, Garrote G, Parajó JC (2012) Bioethanol production from autohydrolyzed Eucalyptus globulus by Simultaneous Saccharification and Fermentation operating at high solids loading. Fuel 94:305–312

    Article  Google Scholar 

  • Root DE, Saeman JF, Harris JE (1959) Chemical conversion of wood residues. Part II: kinetics of the acid-catalyzed conversion of xylose to furfural. Forest Prod J 9:158–165

    Google Scholar 

  • Rudolf A, Alkasrawi M, Zacchi G, Lidén G (2005) A comparison between batch and fed-batch simultaneous saccharification and fermentation of steam pretreated spruce. Enzyme Microb Technol 37:195–204

    Article  Google Scholar 

  • Ruiz HA, Vicente AA, Teixeira JA (2012) Kinetic modeling of enzymatic saccharification using wheat straw pretreated under autohydrolysis and organosolv process. Ind Crop Prod 36:100–107

    Article  Google Scholar 

  • Ruiz HA, Rodríguez-Jasso RM, Fernandes BD, Vicente AA, Teixeira JA (2013) Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: a review. Renew Sustain Energy Rev 21:35–51

    Article  Google Scholar 

  • Runge T, Wipperfurth P, Zhang C (2012) Improving biomass combustion quality using a liquid hot water treatment. Biofuels 4:73–83

    Article  Google Scholar 

  • Saadatmand S, Edlund U, Albertsson A-C, Danielsson S, Dahlman O (2012) Prehydrolysis in softwood pulping produces a valuable biorefinery fraction for material utilization. Environ Sci Technol 46:8389–8396

    Article  Google Scholar 

  • Sabiha-Hanim S, Noor MAM, Rosma A (2011) Effect of autohydrolysis and enzymatic treatment on oil palm (Elaeis guineensis Jacq.) frond fibres for xylose and xylooligosaccharides production. Bioresour Technol 102:1234–1239

    Article  Google Scholar 

  • Saddler J, Ramos L, Breuil C (1993) Steam pretreatment of lignocellulosic residues. In: Saddler J (ed) Bioconversion of forest and agricultural plant residues. C.A.B. International, Wallingford, pp 73–92

    Google Scholar 

  • Saeman JF (1945) Kinetics of wood saccharification-hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature. Ind Eng Chem Res 37:43–52

    Article  Google Scholar 

  • Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291

    Article  Google Scholar 

  • Saha BC, Yoshida T, Cotta MA, Sonomoto K (2013) Hydrothermal pretreatment and enzymatic saccharification of corn stover for efficient ethanol production. Ind Crop Prod 44:367–372

    Article  Google Scholar 

  • Samuel R, Foston M, Jaing N, Cao S, Allison L, Studer M, Wyman C, Ragauskas AJ (2011a) HSQC (heteronuclear single quantum coherence) 13C–1H correlation spectra of whole biomass in perdeuterated pyridinium chloride–DMSO system: an effective tool for evaluating pretreatment. Fuel 90:2836–2842

    Article  Google Scholar 

  • Samuel R, Foston M, Jiang N, Allison L, Ragauskas AJ (2011b) Structural changes in switchgrass lignin and hemicelluloses during pretreatments by NMR analysis. Polym Degrad Stab 96:2002–2009

    Article  Google Scholar 

  • Sasaki K, Okamoto M, Shirai T, Tsuge Y, Teramura H, Sasaki D, Kawaguchi H, Hasunuma T, Ogino C, Matsuda F, Kikuchi J, Kondo A (2015) Precipitate obtained following membrane separation of hydrothermally pretreated rice straw liquid revealed by 2D NMR to have high lignin content. Biotechnol Biofuels 8:88

    Article  Google Scholar 

  • Saukkonen E, Kautto J, Rauvanto I, Backfolk K (2012) Characteristics of prehydrolysis-kraft pulp fibers from Scots pine. Holzforschung 66:801–808

    Article  Google Scholar 

  • Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289

    Article  Google Scholar 

  • Schwald W, Breuil C, Brownell HH, Chan M, Saddler JM (1989) Assessment of pretreatment conditions to obtain fast complete hydrolysis on high substrate concentrations. Appl Biochem Biotechnol 20:29–44

    Article  Google Scholar 

  • Selig MJ, Viamajala S, Decker SR, Tucker MP, Himmel ME, Vinzant TB (2007) Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose. Biotechnol Prog 23:1333–1339

    Article  Google Scholar 

  • Selig MJ, Tucker MP, Sykes RW, Reichel KL, Brunecky R, Himmel ME, Davis MF, Decker SR (2010) Lignocellulose recalcitrance screening by integrated high-throughput hydrothermal pretreatment and enzymatic saccharification. Ind Biotechnol 6:104–111

    Article  Google Scholar 

  • Sella Kapu N, Trajano HL (2014) Review of hemicellulose hydrolysis in softwoods and bamboo. Biofuels Bioprod Biorefin 8:857–870

    Article  Google Scholar 

  • Shi ZJ, Xiao LP, Deng J, Xu F, Sun RC (2011) Isolation and characterization of soluble polysaccharides of Dendrocalamus brandisii: a high-yielding bamboo species. Bioresources 6:5151–5166

    Google Scholar 

  • Shibuya N, Iwasaki T (1985) Structural features of rice bran hemicellulose. Phytochemistry 24:285–289

    Article  Google Scholar 

  • Shimizu K (2001) Chemistry of hemicelluloses. In: Hon DN-S, Shiraishi N (eds) Wood and cellulose chemistry. Marcel Dekker, New York, pp 177–214

    Google Scholar 

  • Sidiras D, Batzias F, Ranjan R, Tsapatsis M (2011) Simulation and optimization of batch autohydrolysis of wheat straw to monosaccharides and oligosaccharides. Bioresour Technol 102:10486–10492

    Article  Google Scholar 

  • Sixta H (2006) Multistage kraft pulping. In: Sixta H (ed) Handbook of pulp. Wiley-VCH, Weinheim, pp 325–365

    Chapter  Google Scholar 

  • Sjöström E (1993) Wood chemistry: fundamentals and applications, 2nd edn. Academic, New York

    Google Scholar 

  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. TP-510-42618 National Renewable Energy Laboratory (NREL), Golden

    Google Scholar 

  • Smith BG, Harris PJ (1999) The polysaccharide composition of Poales cell walls: Poaceae cell walls are not unique. Biochem Syst Ecol 27:33–53

    Article  Google Scholar 

  • Söderström J, Pilcher L, Galbe M, Zacchi G (2003) Two-step steam pretreatment of softwood by dilute H2SO4 impregnation for ethanol production. Biomass Bioenergy 24:475–486

    Article  Google Scholar 

  • Song T, Pranovich A, Sumerskiy I, Holmbom B (2008) Extraction of galactoglucomannan from spruce wood with pressurised hot water. Holzforschung 62:659–666

    Article  Google Scholar 

  • Song T, Pranovich A, Holmbom B (2013) Separation of polymeric galactoglucomannans from hot-water extract of spruce wood. Bioresour Technol 130:198–203

    Article  Google Scholar 

  • Sørensen I, Pettolino FA, Wilson SM, Doblin MS, Johansen B, Bacic A, Willats WG (2008) Mixed-linkage (1→3),(1→4)-β-d-glucan is not unique to the Poales and is an abundant component of Equisetum arvense cell walls. Plant J 54:510–521

    Article  Google Scholar 

  • Spiridon I, Popa VI (2008) Hemicelluloses: major sources, properties and applications. In: Belgacem MN, Gandini A (eds) Monomers, polymers and composites from renewable resources, vol 1. Elsevier, Amsterdam, pp 289–304

    Chapter  Google Scholar 

  • Stenberg K, Tengborg C, Galbe M, Zacchi G (1998) Optimisation of steam pretreatment of SO2-impregnated mixed softwoods for ethanol production. J Chem Technol Biotechnol 71:299–308

    Google Scholar 

  • Stone B, Fincher GB (2004) Chemistry of non-starch polysaccharides from cereal grains. In: Wrigley CW, Corke H, Walker CE (eds) Encyclopedia of grain sciences. Academic, Oxford, pp 206–223

    Google Scholar 

  • Subba Rao MVSST, Muralikrishna G (2006) Hemicelluloses of ragi (Finger Millet, Eleusine coracana, Indaf-15): isolation and purification of an alkali-extractable arabinoxylan from native and malted hemicellulose B. J Agric Food Chem 54:2342–2349

    Article  Google Scholar 

  • Sun RC, Sun XF (2002) Fractional and structural characterization of hemicelluloses isolated by alkali and alkaline peroxide from barley straw. Carbohydr Polym 49:415–423

    Article  Google Scholar 

  • Suryawati L, Wilkins MR, Bellmer DD, Huhnke RL, Maness NO, Banat IM (2009) Effect of hydrothermolysis process conditions on pretreated switchgrass composition and ethanol yield by SSF with Kluyveromyces marxianus IMB4. Process Biochem 44:540–545

    Article  Google Scholar 

  • Teleman A, Nordstrom M, Tenkanen M, Jacobs A, Dahlman O (2003) Isolation and characterization of O-acetylated glucomannans from aspen and birch wood. Carbohydr Res 338:525–534

    Article  Google Scholar 

  • Testova L, Chong SL, Tenkanen M, Sixta H (2011) Autohydrolysis of birch wood. Holzforschung 65:535–542

    Article  Google Scholar 

  • Timell TE (1967) Recent progress in the chemistry of wood hemicelluloses. Wood Sci Technol 1:45–70

    Article  Google Scholar 

  • Trajano H, Engle N, Foston M, Ragauskas A, Tschaplinski T, Wyman C (2013) The fate of lignin during hydrothermal pretreatment. Biotechnol Biofuels 6:110

    Article  Google Scholar 

  • Trajano HL, Pattathil S, Tomkins BA, Tschaplinski TJ, Hahn MG, Van Berkel GJ, Wyman CE (2015) Xylan hydrolysis in Populus trichocarpa x P. deltoides and model substrates during hydrothermal pretreatment. Bioresour Technol 179:202–210

    Article  Google Scholar 

  • Trethewey JA, Campbell LM, Harris PJ (2005) (1→3),(1→4)-β-d-Glucans in the cell walls of the Poales (sensu lato): an immunogold labeling study using a monoclonal antibody. Am J Bot 92:1660–1674

    Article  Google Scholar 

  • Tuck CO, Pérez E, Horváth IT, Sheldon RA, Poliakoff M (2012) Valorization of biomass: deriving more value from waste. Science 337:695–699

    Article  Google Scholar 

  • Tunc MS, van Heiningen ARP (2011) Characterization and molecular weight distribution of carbohydrates isolated from the autohydrolysis extract of mixed southern hardwoods. Carbohydr Polym 83:8–13

    Article  Google Scholar 

  • Vegas R, Kabel M, Schols HA, Alonso JL, Parajo JC (2008) Hydrothermal processing of rice husks: effects of severity on product distribution. J Chem Technol Biotechnol 83:965–972

    Article  Google Scholar 

  • Verbruggen MA, Spronk BA, Schols HA, Beldman G, Voragen AG, Thomas JR, Kamerling JP, Vliegenthart JF (1998) Structures of enzymically derived oligosaccharides from sorghum glucuronoarabinoxylan. Carbohydr Res 306:265–274

    Article  Google Scholar 

  • Wan C, Li Y (2011) Effect of hot water extraction and liquid hot water pretreatment on the fungal degradation of biomass feedstocks. Bioresour Technol 102:9788–9793

    Article  Google Scholar 

  • Wang W, Zhuang X, Yuan Z, Yu Q, Qi W, Wang Q, Tan X (2012) High consistency enzymatic saccharification of sweet sorghum bagasse pretreated with liquid hot water. Bioresour Technol 108:252–257

    Article  Google Scholar 

  • Wang Y, Agarwal S, Kloekhorst A, Heeres HJ (2016) Catalytic hydrotreatment of humins in mixtures of formic acid/2-propanol with supported ruthenium catalysts. ChemSusChem 9:951–961

    Article  Google Scholar 

  • Watanabe M, Aizawa Y, Iida T, Levy C, Aida TM, Inomata H (2005) Glucose reactions within the heating period and the effect of heating rate on the reactions in hot compressed water. Carbohydr Res 340:1931–1939

    Article  Google Scholar 

  • Weckhuysen BM (2013) Recalcitrance of nature: chemocatalysis for the production of biomass-based building blocks. ChemSusChem 6:1559–1563

    Article  Google Scholar 

  • Weil J, Sarikaya A, Rau S-L, Goetz J, Ladisch CM, Brewer M, Hendrickson R, Ladisch MR (1997) Pretreatment of yellow poplar sawdust by pressure cooking in water. Appl Biochem Biotechnol 68:21–40

    Article  Google Scholar 

  • Weil J, Brewer M, Hendrickson R, Sarikaya A, Ladisch MR (1998a) Continuous pH monitoring during pretreatment of yellow poplar wood sawdust by pressure cooking in water. Appl Biochem Biotechnol 70–72:91–111

    Google Scholar 

  • Weil JR, Sarikaya A, Rau S-L, Goetz J, Ladisch CM, Brewer M, Hendrickson R, Ladisch MR (1998b) Pretreatment of corn fiber by pressure cooking in water. Appl Biochem Biotechnol 73:1–17

    Article  Google Scholar 

  • Wellner N, Ebringerová A, Hromádková Z, Wilson R, Belton P (1999) Characterisation of xylan-type polysaccharides and associated cell wall components by FT-IR and FT-Raman spectroscopies. Food Hydrocoll 13:35–41

    Article  Google Scholar 

  • Wen JL, Xiao LP, Sun YC, Sun SN, Xu F, Sun RC, Zhang XL (2011) Comparative study of alkali-soluble hemicelluloses isolated from bamboo (Bambusa rigida). Carbohydr Res 346:111–120

    Article  Google Scholar 

  • Wende G, Fry SC (1997) O-feruloylated, O-acetylated oligosaccharides as side-chains of grass xylans. Phytochemistry 44:1011–1018

    Article  Google Scholar 

  • Willför S, Sjöholm R, Laine C, Roslund M, Hemming J, Holmbom B (2003) Characterisation of water-soluble galactoglucomannans from Norway spruce wood and thermomechanical pulp. Carbohydr Polym 52:175–187

    Article  Google Scholar 

  • Willför S, Sundberg A, Pranovich A, Holmbom B (2005) Polysaccharides in some industrially important hardwood species. Wood Sci Technol 39:601–617

    Article  Google Scholar 

  • Woodward JR, Fincher GB, Stone BA (1983) Water-soluble (1→3),(1→4)-β-D-glucans from barley (Hordeum vulgare) endosperm. II. Fine structure. Carbohydr Polym 3:207–225

    Google Scholar 

  • Wyman CE (ed) (2013) Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals. Wiley, Weinheim

    Google Scholar 

  • Wyman CE, Decker SR, Himmel ME, Brady JW, Skopec CE, Viikari L (2005) Hydrolysis of cellulose and hemicellulose. In: Dumitriu S (ed) Polysaccharides: structural diversity and functional versatility. Marcel Dekker, New York, pp 995–1033

    Google Scholar 

  • Xiao LP, Sun ZJ, Shi ZJ, Xu F, Sun RC (2011a) Impact of hot compressed water pretreatment on the structural changes of woody biomass for bioethanol production. BioResources 6:1576–1598

    Google Scholar 

  • Xiao LP, Xu F, Sun RC (2011b) Fractional isolation and structural characterization of hemicellulosic polymers from Caragana sinica. e-Polymers 11:979–994

    Google Scholar 

  • Xiao LP, Shi ZJ, Xu F, Sun RC (2012) Characterization of MWLs from Tamarix ramosissima isolated before and after hydrothermal treatment by spectroscopical and wet chemical methods. Holzforschung 66:295–302

    Google Scholar 

  • Xiao LP, Shi ZJ, Bai YY, Wang W, Zhang XM, Sun RC (2013a) Biodegradation of lignocellulose by white-rot fungi: structural characterization of water-soluble hemicelluloses. Bioenergy Res 6:1154–1164

    Article  Google Scholar 

  • Xiao LP, Shi ZJ, Xu F, Sun RC (2013b) Characterization of lignins isolated with alkaline ethanol from the hydrothermal pretreated Tamarix ramosissima. Bioenergy Res 6:519–532

    Article  Google Scholar 

  • Xiao LP, Shi ZJ, Xu F, Sun RC (2013c) Hydrothermal treatment and enzymatic hydrolysis of Tamarix ramosissima: evaluation of the process as a conversion method in a biorefinery concept. Bioresour Technol 135:73–81

    Article  Google Scholar 

  • Xiao LP, Bai YY, Shi ZJ, Lu Q, Sun RC (2014a) Influence of alkaline hydrothermal pretreatment on shrub wood Tamarix ramosissima: characteristics of degraded lignin. Biomass Bioenergy 68:82–94

    Article  Google Scholar 

  • Xiao LP, Lin Z, Peng WX, Yuan TQ, Xu F, Li NC, Tao QS, Xiang H, Sun RC (2014b) Unraveling the structural characteristics of lignin in hydrothermal pretreated fibers and manufactured binderless boards from Eucalyptus grandis. Sustain Chem Process 2:9

    Article  Google Scholar 

  • Xu C, Pranovich A, Vähäsalo L, Hemming J, Holmbom B, Schols HA, Willför S (2008) Kinetics of acid hydrolysis of water-soluble spruce O-acetyl galactoglucomannans. J Agric Food Chem 56:2429–2435

    Article  Google Scholar 

  • Yang B, Wyman CE (2004) Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnol Bioeng 86:88–98

    Article  Google Scholar 

  • Yang B, Wyman CE (2008) Characterization of the degree of polymerization of xylooligomers produced by flowthrough hydrolysis of pure xylan and corn stover with water. Bioresour Technol 99:5756–5762

    Article  Google Scholar 

  • Yelle DJ, Ralph J, Frihart CR (2008) Characterization of nonderivatized plant cell walls using high-resolution solution-state NMR spectroscopy. Magn Reson Chem 46:508–517

    Article  Google Scholar 

  • Yelle D, Kaparaju P, Hunt C, Hirth K, Kim H, Ralph J, Felby C (2013) Two-dimensional NMR evidence for cleavage of lignin and xylan substituents in wheat straw through hydrothermal pretreatment and enzymatic hydrolysis. Bioenergy Res 6:211–221

    Article  Google Scholar 

  • Yoshimura M, Byrappa K (2008) Hydrothermal processing of materials: past, present and future. J Mater Sci 43:2085–2103

    Article  Google Scholar 

  • Yu Q, Zhuang X, Lv S, He M, Zhang Y, Yuan Z, Qi W, Wang Q, Wang W, Tan X (2013) Liquid hot water pretreatment of sugarcane bagasse and its comparison with chemical pretreatment methods for the sugar recovery and structural changes. Bioresour Technol 129:592–598

    Article  Google Scholar 

  • van Zandvoort I, Wang Y, Rasrendra CB, van Eck ER, Bruijnincx PC, Heeres HJ, Weckhuysen BM (2013) Formation, molecular structure, and morphology of humins in biomass conversion: influence of feedstock and processing conditions. ChemSusChem 6:1745–1758

    Article  Google Scholar 

  • van Zandvoort I, Koers EJ, Weingarth M, Bruijnincx PCA, Baldus M, Weckhuysen BM (2015) Structural characterization of 13C-enriched humins and alkali-treated 13C humins by 2D solid-state NMR. Green Chem 17:4383–4392

    Article  Google Scholar 

  • Zeng M, Ximenes E, Ladisch MR, Mosier NS, Vermerris W, Huang C-P, Sherman DM (2012) Tissue-specific biomass recalcitrance in corn stover pretreated with liquid hot-water: SEM imaging (part 2). Biotechnol Bioeng 109:398–404

    Article  Google Scholar 

  • Zhang H, Xu S, Wu S (2013) Enhancement of enzymatic saccharification of sugarcane bagasse by liquid hot water pretreatment. Bioresour Technol 143:391–396

    Article  Google Scholar 

  • Zhao X, Zhang L, Liu D (2012) Biomass recalcitrance. Part II: fundamentals of different pre-treatments to increase the enzymatic digestibility of lignocellulose. Biofuels Bioprod Biorefin 6:561–579

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 21506013), State Key Laboratory of Pulp and Paper Engineering (No. 201518), Open Funding Project of Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals (No. JSBGFC14009), Fundamental Research Funds for the Central Universities (No. BLYJ2014-38), and China Postdoctoral Science Foundation (No. 2015M570040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Run-Cang Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Xiao, LP., Song, GY., Sun, RC. (2017). Effect of Hydrothermal Processing on Hemicellulose Structure. In: Ruiz, H., Hedegaard Thomsen, M., Trajano, H. (eds) Hydrothermal Processing in Biorefineries. Springer, Cham. https://doi.org/10.1007/978-3-319-56457-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56457-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56456-2

  • Online ISBN: 978-3-319-56457-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics