Advertisement

On the Advanced Milling Technology of Thin-Walled Parts for Aerospace Industry

Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

This paper is focused on advanced analysis of a progressive milling technology of high strength alumina alloy 7475-T7351 that is used in modern aerospace industry today. The analyses comprises a study of the material, its mechanical properties, use of alternative monolithic-carbide tool designs, micro-geometries of the milling cutters, coatings and a study of cutting parameters on dynamics of cutting , its productivity, quality of the surfaces and other specific cutting phenomena. This work includes an experimental verification of the proposed technology using 5-axis CNC machining centre, evaluation of 2D/3D surface structures using optical high-resolution 3D surface device. Dynamometer Kistler 9575B/SW DynoWare were used for measuring of instantaneous force loading in long time series. The results are relevant for milling of thin-walled parts and the up and down milling strategies without any other surface treatment of the parts. Some fatigue studies are in progress.

Keywords

Tool geometry Force loading Surface topography 

Notes

Acknowledgements

This research work was supported by the Brno University of Technology, Faculty of Mechanical Engineering, Specific research 2016, with the grant “Research of modern production technologies for specific applications”, FSI-S-16-3717.

References

  1. 1.
    Raymer D (2012) Aircraft design: a conceptual approach (Aiaa education series), 5th edn. American Institute of Aeronautics and Astronautics, RestonGoogle Scholar
  2. 2.
    Starke EA, Staley JT (1996) Application of modern aluminum alloys to aircraft. Prog Aerospace Sci 32(2–3): 131–172. ISSN 03760421Google Scholar
  3. 3.
    Shanmugam NE, Liew RJY, Thevendran AV (1998) Thin-walled structures: research and development. In: Second international conference on thin-walled structures. Elsevier, New YorkGoogle Scholar
  4. 4.
    Ratchev S, Liu S Becker AA (2005) Error compensation strategy in milling flexible thin-wall parts. J Mater Process Technol 162–163: 673–681. ISSN 09240136Google Scholar
  5. 5.
    Aijun T, Zhanqiang L (2008) Deformations of thin-walled plate due to static end milling force. J Mater Process Technol 206(1–3): 345–351. ISSN 09240136Google Scholar
  6. 6.
    Ratchev S, Liu S, Huang W, Becker AA (2004) Milling error prediction and compensation in machining of low-rigidity parts. Int J Mach Tools and Manuf 44(15): 1629–1641. ISSN 08906955Google Scholar
  7. 7.
    Shahzad M (2011) Majid. Influence de la rugosité et des traitements d’anodisation sur la tenue en fatigue des alliages d’aluminium aéronautiques 2214 et 7050. TOULOUSE, Thesis. L’UNIVERSITÉ DE TOULOUSE. Supervisor M. Farhad Rézaï-AriaGoogle Scholar
  8. 8.
    Alloy 7475 Plate and Sheet. Iowa: ALCOA. (vid. 2016-08-20). Available from: https://www.arconic.com/mill_products/catalog/pdf/alloy7475techplatesheet.pdf
  9. 9.
    Alloy designations. Alumeco (online). Odense, 2016. (vid. 2017-02-09). Available from: http://www.alumeco.com/Knowledge-and-Technique/Aluminium-data/Temper-descriptions.aspx
  10. 10.
    Al-Rubaie K, Barroso EKL, Godefroid LB (2006) Fatigue crack growth analysis of pre-strained 7475–T7351 aluminum alloy. Int J Fatigue. 28: 934–94Google Scholar
  11. 11.
    Static and dynamic fracture properties for aluminum 7475 T7351: Final report. University of Dayton. Research Institute. Ohio, 1975. (vid. 2017-02-09). Available from: http://www.dtic.mil/dtic/tr/fulltext/u2/a014353.pdf
  12. 12.
    Forejt, M, Píška M (2006) Teorie obrábění, tváření a nástroje (Theory of metal cutting and forming). Brno. Akademické nakladatelství CERM s.r.o.Google Scholar
  13. 13.
    Tlusty J (1999) Manufacturing Process and Equipment. 1st ed. Prentice Hall, p 928. ISBN 10-0201498650Google Scholar
  14. 14.
    Grzesik W (2011) Wit. Podstawy skrawania materiałów konstrukcyjnych. Wydawnictwa Naukowo Techniczne. OpoleGoogle Scholar
  15. 15.
    Davim JP (2010) Surface integrity in machining. Springer, LondonGoogle Scholar
  16. 16.
    Degarmo, PE, Black JT, Kohser RA 2003 Materials and processes in manufacturing. 9th edn. update ed. Wiley. Hoboken. (vid. 2017-02-09). Available from: http://dcetind.weebly.com/uploads/9/1/6/3/9163431/solutions_manual_-_materials___processing_in_manufacturing__demargo_.pdf
  17. 17.
    Jiang XJ, Whitehouse DJ (2012) Technological shifts in surface metrology. CIRP Annals—Manuf Technol 61(2): 815-836. ISSN 00078506Google Scholar
  18. 18.
    EN ISO 4287 (1997) Surface texture: profile method—terms, definitions and surface texture parametersGoogle Scholar
  19. 19.
    Ojolo SJ (2014) Machining variables influence on the fatigue life of end-milled aluminium alloy. Int J Mater Sci Appl 3(6): 391–398. ISSN 2327-2635Google Scholar
  20. 20.
    Novovic D, Dewes RC, Aspinwall DK, Voice W, Bowen AP (2004) The effect of machined topography and integrity on fatigue life. Int J Mach Tools Manuf 44(2–3): 125–134. ISSN 08906955Google Scholar
  21. 21.
    Siebel E, Gaier AM (1957) Influence of surface roughness on the fatigue strength of steels and non-ferrous alloys. Metal Fatigue: Eff Small Defects Nonmetallic Inclusions Eng Digest 18(3): 109–112Google Scholar
  22. 22.
    Gómez A, Sanz A, Marcos M (2012) An analysis of the influence of cutting parameters on the turning process on the fatigue life of aluminum alloy UNS A92024-T351. Adv Mater Res 498:19–24CrossRefGoogle Scholar
  23. 23.
    EN ISO 4287 (1997) Surface texture: profile method—terms, definitions and surface texture parametersGoogle Scholar
  24. 24.
    Abbott EJ, Firestone FA (1933) Specifying surface quality. Mech Eng 55:569–572Google Scholar
  25. 25.
    Rîpă M, Tomescu L, Hapenciuc M (2003) Tribological characterisation of surface topography using Abbott-Firestone curve. University “Dunărea de Jos” of Galati, România. ISSN ISSN 1221-4590Google Scholar
  26. 26.
    Taylor H (2002) Form Talysurf Intra: operator’s handbookGoogle Scholar
  27. 27.
    Zhang T, Bartolo MP, Vasco J, Silva B, Galo C (2006) Laser micromachining for mould manufacturing: I the Influence of operating parameters. Assembly Auto 26(3): 227–234. ISSN 0144-5154Google Scholar
  28. 28.
    Sasahara H (2005) The effect on fatigue life of residual stress and surface hardness resulting from different cutting conditions of 0.45% C steel. Int J Mach Tools Manuf 45(2): 131–136. ISSN 08906955Google Scholar
  29. 29.
    Souto-Lebel A, Guillemot N, Lartigue C, Billardon AR (2011) Characterization and influence of defect size distribution induced by ball-end finishing milling on fatigue life. Procedia Eng 19: 343–348. ISSN 18777058Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Manufacturing EngineeringBUT FME BrnoBrno, Brno-Královo PoleCzech Republic

Personalised recommendations