A Holistic Approach for Developing and Commissioning Data Driven CPPS Functionality in Manufacturing Systems

Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

The manufacturing of high-tech materials such as forming of composites often requires complex process chains with a multitude of parameters and parameter interactions. Hence, the manufacturing processes themselves and especially monitoring and controlling those processes becomes increasingly complex. Currently developed Cyber-Physical Production Systems (CPPS) shall comprise data acquisition by sensors, connected actuators, communication functionality as well as data analysis based on mathematical models and autonomous process control. Hence, it becomes possible to detect the current process state and to adjust process parameters in real-time in an optimal way accordingly.

Keywords

Cyber-physical production systems Process data analysis Process chain Parameter adaptation 

References

  1. 1.
    Mink F, Bähr A, Beineke S (2009) Self-commissioning feedforward control for industrial servo drive. In: 8th International symposium on advanced electromechanical motion systems & electric drives joint symposium, electromotion, pp 1–6Google Scholar
  2. 2.
    Weck M et al (2003) Coupled simulation of control loop and structural dynamics. Ann Ger Acad Soc Prod Eng X(2):105–110Google Scholar
  3. 3.
    Bombińskia S et al (2016) Sensor signal segmentation for tool condition monitoring. In: Procedia of the CIRP, vol 46, pp 155–160Google Scholar
  4. 4.
    Schönherr R, Schlegel H, Drossel W‐G (2012) Assessing the performance of servo drive feedback controls. In: Proceedings of the 13th mechatronics forum, international conference, vol 1, Linz, AustriaGoogle Scholar
  5. 5.
    Monostori L et al (2016) Cyber-physical systems in manufacturing. Ann CIRP 65(2):621–641CrossRefGoogle Scholar
  6. 6.
    Gill H (2008) A continuing vision: cyber-physical systems. In: Fourth annual Carnegie Mellon conference on the electricity industry future energy systems: efficiency, security, controlGoogle Scholar
  7. 7.
    Roth A (eds) (2016) Einführung und Umsetzung von Industrie 4.0 Grundlagen, Vorgehensmodellund Use Cases aus der Praxis. SpringerGoogle Scholar
  8. 8.
    Spindler K et al (2015) The Audi toolshop—taking the next step into digital dimension. In: 5th international conference on accuracy in forming technology, pp 15–32Google Scholar
  9. 9.
    Hellmich A et al (2016) Drive data acquisition for controller internal monitoring functions. In: XXVII CIRP sponsored conference on supervising and diagnostics of machining systems, Karpacz, PolandGoogle Scholar
  10. 10.
    Hammerstingl V, Reinhart G (2015) Unified plug & produce architecture for automatic integration of field devices in industrial environments. In: Proceedings of the IEEE international conference on industrial technology, pp 1956–1963Google Scholar
  11. 11.
    Modler N et al (2016) Novel hybrid yarn textile thermoplastic composites for function-integrating multi-material lightweight design. Adv Eng Mater 18(3):361–368Google Scholar
  12. 12.
    Großmann K, Wiemer H (2010) Reproduzierbare Fertigung in innovativen Prozessketten. Besonderheiten innovativer Prozessketten und methodische Ansätze für ihre Beschreibung. Analyse und Führung (Teil 1), ZWF 10, pp 855–859Google Scholar
  13. 13.
    Großmann K et al (2010) Reproduzierbare Fertigung in innovativen Prozessketten. Konzeption eines Beschreibungs- und Analysetools (Teil 2), ZWF 11, pp 954–995Google Scholar
  14. 14.
    Großmann K, Wiemer H, Großmann KK (2013) Methods for modelling and analysing process chains for supporting the development of new technologies. In: Procedia materials science, materials science engineering, vol 2, pp 34–42Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Hajo Wiemer
    • 1
  • Arvid Hellmich
    • 2
  • Steffen Ihlenfeldt
    • 1
    • 2
  1. 1.Institute for Machine Tools and Control EngineeringTechnische Universitaet Dresden (TUD)DresdenGermany
  2. 2.Fraunhofer Institute for Machine Tools and Forming Technology (IWU)DresdenGermany

Personalised recommendations