Cyber-Physical Manufacturing Systems (CPMS)

  • Zivana Jakovljevic
  • Vidosav Majstorovic
  • Slavenko Stojadinovic
  • Srdjan Zivkovic
  • Nemanja Gligorijevic
  • Miroslav Pajic
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

Increased product variety that market needs impose to manufacturers, requires high level adaptability of manufacturing systems that can be achieved through introduction of reconfigurable manufacturing systems composed of interoperable devices with ever-changing architecture. Control and management of such a complex system of systems requires fast and reliable real-time virtualization of real world applications as well as real-time feedback from virtual (cyber) model to the real world. The border line between real-world manufacturing system and its cyber representation is characterized by extremely high information permeability thus composing these two systems into a unique system—Cyber-Physical Manufacturing System (CPMS). Recent advances in the fields of Cyber-Physical Systems (CPS) and Internet of Things (IoT) enable creation of CPMS. In this paper we provide an overview of the research works that are currently conducted in the field of CPMS, and we outline the interconnection between CPMS and Industry 4.0. The motivation of this overview is the identification of the R&D activities that are necessary for industry-wide application of CPMS.

Keywords

Cyber-physical manufacturing systems Industry 4.0 Internet of things and services 

Notes

Acknowledgements

This work is a part of research which is supported by the Ministry of Science and Technological Development of Serbia, with Grant Numbers TR35007, TR35020 and TR35022.

References

  1. 1.
    Monostori L et al (2016) Cyber-physical systems in manufacturing. CIRP Ann Manuf Technol 65:621–641. doi: 10.1016/j.cirp.2016.06.005
  2. 2.
    Monostori L (2014) Cyber-physical production systems: roots, expectations and R&D challenges. Procedia CIRP 17:9–13. doi: 10.1016/j.procir.2014.03.115 CrossRefGoogle Scholar
  3. 3.
    Shariatzadeha N, Lundholma T, Lindberga L, Sivarda G (2016) Integration of digital factory with smart factory based on Internet of Things. Procedia CIRP 50:512–517. doi: 10.1016/j.procir.2016.05.050 CrossRefGoogle Scholar
  4. 4.
    Lee J, Bagheri B, Jin C (2016) Introduction to Cyber Manufacturing. Manuf Lett 8:11–15. doi: 10.1016/j.mfglet.2016.05.002 CrossRefGoogle Scholar
  5. 5.
    Botta A et al (2016) Integration of cloud computing and internet of Things: a survey. Future Gener Comput Syst 56:684–700. doi: 10.1016/j.future.2015.09.021 CrossRefGoogle Scholar
  6. 6.
    Mineraud J, Mazhelis O, Su X, Tarkoma S (2016) A gap analysis of Internet-of-Things platforms. Comput Commun 89–90:5–16. doi: 10.1016/j.comcom.2016.03.015 CrossRefGoogle Scholar
  7. 7.
    Thramboulidis K, Christoulakis F (2016) UML4IoT—a UML-based approach to exploit IoT in cyber-physical manufacturing systems. Comput Ind 82:259–272. doi: 10.1016/j.compind.05.010 CrossRefGoogle Scholar
  8. 8.
    Song Z, Sun Y, Wan J, Liang P (2016) Data quality management for service-oriented manufacturing cyber-physical systems. Comput Electr Eng 48:1–11. doi: 10.1016/j.compeleceng.2016.08.010 Google Scholar
  9. 9.
    Barthelmeya A, Störklea D, Kuhlenköttera B, Deusea J (2014) Cyber physical systems for life cycle continuous technical documentation of manufacturing facilities. Procedia CIRP 17:207–211. doi: 10.1016/j.procir.2014.01.050 CrossRefGoogle Scholar
  10. 10.
    Lee EA, Seshia SA (2015) Introduction to Embedded Systems—A Cyber-Physical Systems Approach. Second Edition. LeeSeshia.orgGoogle Scholar
  11. 11.
    Jakovljevic Z, Markovic V, Puzovic R, Majstorovic V (2016) Recognition of one class of quadrics from 3D point clouds. Procedia CIRP 57:292–297. doi: 10.1016/j.procir.2016.11.051 CrossRefGoogle Scholar
  12. 12.
    Rajkumar R, Lee I, Sha L, Stankovic J (2010) Cyber-physical systems: the next computing revolution. Proceedings of 47th ACM/IEEE design automation conference. Anaheim, CA, USA. 13–18 June 2010, pp 731–736Google Scholar
  13. 13.
    Hu F, Lu Y, Vasilakos A, Hao Q, Ma R, Patil Y, Zhang T, Lu J, Li X, Xiong N (2016) Robust cyber–physical systems: concept, models, and implementation. Future Gener Comput Syst 56:449–475. doi: 10.1016/j.future.2015.06.006
  14. 14.
    Horizon 2020 Work Programme 2016–2017:17. Cross—cutting activities (Focus Areas) http://ec.europa.eu/research/participants/data/ref/h2020/wp/2016_2017/main/h2020-wp1617-focus_en.pdf. Accessed 27.02.2017
  15. 15.
  16. 16.
    www.nsf.gov. Accessed 27.02.2017
  17. 17.
    Lee J, Bagheri B, Kao H-A (2015) A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manuf Lett 3:18–23. doi: 10.1016/j.mfglet.2014.12.001 CrossRefGoogle Scholar
  18. 18.
    Lapp Group AG (2014) Die Zukunftsfabrik. Kabelwelt: Industrie 4.0. Revolution in der Fabrikhalle 2:6–10Google Scholar
  19. 19.
    Weyer S, Schmitt M, Ohmer M, Gorecky D (2015) Towards industry 4.0-standardization as the crucial challenge for highly modular, multi-vendor production systems. IFAC-PapersOnLine 48(3):579–584. doi: 10.1016/j.ifacol.2015.06.143
  20. 20.
    Majstorovic V, Stojadinovic S, Durakbasa N (2016) Path planning for inspection prismatic parts on CMM as a part of cyber-physical manufacturing metrology model. J Proc Manuf Syst 11(1):3–8Google Scholar
  21. 21.
    ElMaraghy H, Schuh G, Elmaraghy W, Piller F, Schönsleben P, Tseng M, Bernard A (2013) Product variety management. CIRP Ann Manuf Technol 62(2):629–652CrossRefGoogle Scholar
  22. 22.
    Jovane F, Koren Y, Boër CR (2003) Present and future of flexible automation: towards new paradigms. CIRP Ann Manuf Technol 52(2):543–560CrossRefGoogle Scholar
  23. 23.
    Pilipovic M, Jakovljevic Z (2017) Automatizacija proizvodnje (Manufacturing automation). University of Belgrade, Faculty of Mechanical Engineering, BelgradeGoogle Scholar
  24. 24.
    Kagermann H, Wahlster W, Helbig J (2013) Recommendations for implementing the strategic initiative industrie 4.0. acatech—National Academy of Science and Engineering. http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Material_fuer_Sonderseiten/Industrie_4.0/Final_report__Industrie_4.0_accessible.pdf. Accessed 14 Feb 2017
  25. 25.
    VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik (2015) Reference architecture model Industrie 4.0 (RAMI4.0). http://www.zvei.org/Downloads/Automation/5305%20Publikation%20GMA%20Status%20Report%20ZVEI%20Reference%20Architecture%20Model.pdf. Accessed 14 Feb 2017
  26. 26.
    International Organization for Standardization (2013) IEC 62264–1:2013 enterprise-control system integration—Part 1: models and terminologyGoogle Scholar
  27. 27.
    Vyatkin V (2012) IEC 61499 Function blocks for embedded and distributed control systems design. ISA. ISBN: 978-1-9360007-93-6Google Scholar
  28. 28.
    Lesi V, Jakovljevic Z, Pajic M (2016) Towards Plug-n-Play numerical control for reconfigurable manufacturing systems. In: IEEE international conference on emerging technologies and factory automation, ETFA, Nov 2016, Art. no. 7733524Google Scholar
  29. 29.
    Koren Y, Shpitalni M (2010) Design of reconfigurable manufacturing systems. J Manuf Syst 29(4):130–141Google Scholar
  30. 30.
    Holtewert P, Wutzke R, Seidelmann J, Bauernhansl T (2013) Virtual fort knox federative, secure and cloud-based platform for manufacturing. Procedia CIRP 7:527–532CrossRefGoogle Scholar
  31. 31.
    Schroeder GN, Steinmetz C, Pereira CE, Espindola DB (2016) Digital twin data modeling with automationML and a communication methodology for data exchange. IFAC-PapersOnLine 49(30):12–17CrossRefGoogle Scholar
  32. 32.
    IEEE Internet Initiative (2015) Towards a definition of the Internet of Things (IoT), Revision-1, on-line: http://iot.ieee.org/images/files/pdf/IEEE_IoT_Towards_Definition_Internet_of_Things_Revision1_27MAY15.pdf. Accessed 27.02.2017
  33. 33.
    Kiritsis D (2011) Closed-loop PLM for intelligent products in the era of the internet of things. J Comput Aided Des 43(5):479–501. doi: 10.1016/j.cad.2010.03.002 CrossRefGoogle Scholar
  34. 34.
    Stark J (2015) Product lifecycle management (Volume 2): the devil is in the details (decision engineering), 3rd edn. Springer, ISBN-13: 9783319244341Google Scholar
  35. 35.
    The Tactile Internet. ITU-T Technology watch report. https://www.itu.int/dms_pub/itu-t/oth/23/01/T23010000230001PDFE.pdf. Accessed 03.03.2017
  36. 36.
    Louis Columbus (2016) Roundup of internet of things forecasts and market estimates.https://www.forbes.com/sites/louiscolumbus/2016/11/27/roundup-of-internet-of-things-forecasts-and-market-estimates-2016/#135ae5af292d. Accessed 27.02.2017
  37. 37.
    Teare D, Paquet C (2004) CCNP Self-Study: advanced IP addressing. Cisco Press. http://www.ciscopress.com/articles/printerfriendly/174107. Accessed 03.03.2017
  38. 38.
    Colangelo E, Bauernhansl T (2016) Usage of analytical services in industry today and tomorrow. Procedia CIRP 57:276–280CrossRefGoogle Scholar
  39. 39.
    Gilchrist A (2016) INDUSTRY 4.0: The Industrial Internet of Things. APRESS(eBook). doi: 10.1007/978-1-4842-2047-4

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Zivana Jakovljevic
    • 1
  • Vidosav Majstorovic
    • 1
  • Slavenko Stojadinovic
    • 1
  • Srdjan Zivkovic
    • 2
  • Nemanja Gligorijevic
    • 1
  • Miroslav Pajic
    • 3
  1. 1.University of BelgradeFaculty of Mechanical EngineeringBelgradeSerbia
  2. 2.Military Technical InstituteCoordinate Metrology LabBelgradeSerbia
  3. 3.Duke UniversityDepartment of Electrical and Computer EngineeringDurhamUSA

Personalised recommendations