Skip to main content

Current Spin-Orbit-Induced Microwave Magnetic Dynamics in Layered Nanostructures

  • Conference paper
  • First Online:
  • 1335 Accesses

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 195))

Abstract

Features of the current spin-orbit-induced magnetic dynamics in multilayer nanostructures with nonmagnetic heavy metal layers possessing a strong spin-orbit interaction are studied. These structures include ferromagnetic (FM) and antiferromagnetic (AF)/normal metal (NM) nanostructures based on both conductive and insulating magnetics and heavy normal metals (e.g., FeCoB/Ta, YIG/Pt, Nio/Pt). The spin Hall effect of the conversion of an incoming charge current into a transverse (with respect to the charge current) spin current induces a spin transfer torque and magnetic dynamics including a magnetic precession and switching. The magneto-dynamic effect of a spin current pumping generation together with the inverse spin Hall effect of conversion of the spin current into the incoming charge current provides the influence of the magnetic dynamics on the incoming charge current. These feedforward and feedback between the incoming charge current and the magnetic dynamics can be the basis for the spin-orbit-driven self-sustained auto-oscillations of a magnetic order in the nanostructures. It is shown that the considered magnetic nanostructures possess properties of controlled microwave radiation attaining tens THz in the antiferromagnetic case. Magnetic-induced changes of the electric resistance in the mentioned nanostructure are considered.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zutic L, Fabian J, Das Sarma S (2004) Spintronics: fundamentals and applications. Rev Mod Phys 76:323

    Article  ADS  Google Scholar 

  2. Manchon A, Koo HC, Nitta J, Frolov SM, Duine RA (2015) New perspective for Rashba spin-orbit coupling. Nat Mater 36:871

    Article  ADS  Google Scholar 

  3. Hoffmann A (2013) Spin Hall effects in metals. IEEE 49:5172

    Google Scholar 

  4. Tserkovnyak Y, Brataas A, Bauer GE, Halperin BI (2005) Nonlocal magnetization dynamics in ferromagnetic heterostructures. Rev Mod Phys 77:1375

    Article  ADS  Google Scholar 

  5. Edwards ERJ, Ultrichs H, Demidov VE, Demokritov SO, Urazhdin S (2012) Parametric excitation of magnetization oscillations controlled by pure spin current. Phys Rev B 86:134220

    Article  ADS  Google Scholar 

  6. Liu L, Pai C-F, Li Y, Ralph DC, Buhram RA (2012) Spin-torque switching with the Giant spin-Hall effect. Science 336:555

    Article  ADS  Google Scholar 

  7. Liu RH, Lim WL, Urazhdin S (2013) Spectral characteristics of the microwave emission by the spin Hall Nano-oscillator. Phys Rev Lett 110:147601

    Article  ADS  Google Scholar 

  8. Baither D, Schmitz G, Demokritov SO (2012) Magnetic nanooscillators driven by pure spin current. Nat Mater 11:1028

    ADS  Google Scholar 

  9. Yang T, Kimura T, Otani Y (2008) Giant spin accumulation signal and pure spin-current-induced reversible magnetization at switching. Nature Phys 4:851

    Article  ADS  Google Scholar 

  10. Ebrahim-Zaden E, Urazhdin S (2013) Optimization of Pt-based spin-Hall effect spintronic devices. Appl Phys Lett 102:13402

    Google Scholar 

  11. Volkov NV (2012) Spintronics: manganite-based magnetic tunnel structures. PHYS-USP 55:250

    Article  ADS  Google Scholar 

  12. Hirsch JE (1999) Spin Hall effect. Phys Rev Lett 83:1834

    Article  ADS  MathSciNet  Google Scholar 

  13. Chudnovsky EM (2007) Theory of spin Hall effect. Phys Rev Lett 99:206601

    Article  ADS  Google Scholar 

  14. Miron IM, Gaudin G, Auffer S, Rodmacq B, Schuhl A, Pizzini S, Vogel J, Gambardalla P (2010) Current-driven spin torque induced by the Rashba effect in ferromagnetic metal layer. Nat Mater 9:230

    ADS  Google Scholar 

  15. Manchon A, Zhang S (2009) Theory of spin torque due to spin-orbit coupling. Phys Rev B 79:094422

    Article  ADS  Google Scholar 

  16. Wang X, Manchon A (2012) Diffusive spin dynamics in ferromagnetic thin films with a Rashba interaction. Phys Rev Lett 108:117201

    Article  ADS  Google Scholar 

  17. Cheng R, Zhu J-G, Xiao D (2016) Dynamic feedback in Ferromagnet/spin-Hall Heterostructures. Phys Rev Lett 117:097202

    Article  ADS  Google Scholar 

  18. Gomonay HV, Loktev VM (2010) Spin transfer and current-induced switching in antiferromagnets. Phys Rev B 81:144427

    Article  ADS  Google Scholar 

  19. Brataas A, Bauer GEW, Kelly PJ (2006) Non-collinear magnetoelectronics. Phys Rep 427:157

    Article  ADS  Google Scholar 

  20. Gambardella P, Miron IM (2011) Current-induced spin-orbit torque. Phil Trans R Soc A 369:3175

    Article  ADS  Google Scholar 

  21. Ou Y, Ralph DC, Buhram RA (2012) Strong spin Hall effect in the antiferromagnetic PtMo. Phys Rev B 93:220405

    Article  Google Scholar 

  22. Ando K, Takahashi S, Harii K, Sasage K, Ieda J, Maekawa S, Saitosh E (2008) Electric manipulation of spin relaxation in a film using spin-Hall effect. Phys Rev Lett 101:036601

    Article  ADS  Google Scholar 

  23. Cheng R, Xiao D, Brataas A (2015) Terahertz Antiferromagnetic Spin Hall Nano-Oscillator. Phys Rev Lett 116:207603

    Article  ADS  Google Scholar 

  24. Tserkovnyak YA, Bender SA (2014) Spin Hall phenomenology of magnetic dynamics. Phys Rev B 90:014428

    Article  ADS  Google Scholar 

  25. Tserkovnyak YA, Brataas A, Bauer EW (2002) Spin pumping and magnetic dynamics in metallic multilayers. Phys Rev B 66:224403

    Article  ADS  Google Scholar 

  26. Cheng R, Xiao D, Niu Q, Brataas A (2014) Spin pumping and spin-transfer torques in Antiferromagnets. Phys Rev Lett 113:057601

    Article  ADS  Google Scholar 

  27. Mosendz O, Vlaminck V, Pearson JE, Fradin FY, Bauer GEW, Bader SD, Hoffmann A (2010) Detection and quantification of the inverse spin Hall effect from spin pumping in permalloy/normal metal bilayers. Phys Rev B 82:214403

    Article  ADS  Google Scholar 

  28. Brouver PW (1998) Scattering approach to parametric pumping. Phys Rev B 58:R10135

    Article  ADS  Google Scholar 

  29. Demidov VE, Urazhdin S, Ulrichs H, Tiberkevich V, Slavin A, Baither D, Schmitz G, Demokritov SO (2012) Magnetic nano-oscillator driven by pure spin current. Nat Mater 11:1028

    ADS  Google Scholar 

  30. Pai C-F, Liu L, Tseng HW, Ralph DC, Buchram BA (2012) Spin transfer torque devices utilizing the giant spin Hall effect of tungsten. Appl Phys Lett 101:082407

    Article  ADS  Google Scholar 

  31. Kim K-W, Moon J-H, Lee K-J, Lee H-W (2012) Prediction of Giant spin motive force due to Rashba spin-orbit coupling. Phys Rev Lett 108:21722

    Google Scholar 

  32. Wong CH, Tserkovnyak YA (2009) Hydrodynamic theory of coupled current and magnetization dynamics in spin-textured ferromagnets. Phys Rev B 80:184411

    Article  ADS  Google Scholar 

  33. Wang HL, Due CH, Pu Y, Adur R, Hammel PC, Yang FV (2014) Scaling of spin Hall angle in 3d, 4d and 5d metals from Y3Fe5O12/metals spin pumping. Phys Rev Lett 112:197201

    Article  ADS  Google Scholar 

  34. Brataas A, Tserkovnyak YA, Bauer EW, Halperin PC (2014) Spin battery operated by ferromagnetic resonance. Phys Rev B 66:060404

    Article  Google Scholar 

  35. Vietstra N, Shan J, Castel V, Wees V-T, Yousset JB (2013) Spin-Hall magnetoresistance in platinum yttrium iron garnet: dependence on platinum thickness and in-plane/out-of-plane magnetization. Phys Rev B 87:184421

    Article  ADS  Google Scholar 

  36. Nakayama H, Althammer M, Chen Y-T, Uchida K, Kajiwara Y, Kikuchi D, Ohtani T, Geprags S, Opel M, Takahashi S, Gross R, Bauer GEW, Goennenwein STB, Saitosh E (2013) Spin Hall Magnetoresistance induced by a Nonequilibrium proximity effect. Phys Rev Lett 110:206601

    Article  ADS  Google Scholar 

  37. Chen YT, Takahashi S, Nakayama N, Althammer M, Goennenwein STB, Saitosh E, Bauer GEW (2013) Theory of spin Hall magnetoresistance. Phys Rev B 87:14411

    Google Scholar 

  38. Jungfleisch MB, Lauer V, Neb R, Chumak AK, Hillebrands B (2013) Improvement of the yttrium iron garnet/platinum interface for spin-pumping application. Appl Phys Lett 103:022411

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Korostil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Korostil, A.M., Krupa, M.M. (2017). Current Spin-Orbit-Induced Microwave Magnetic Dynamics in Layered Nanostructures. In: Fesenko, O., Yatsenko, L. (eds) Nanophysics, Nanomaterials, Interface Studies, and Applications . NANO 2016. Springer Proceedings in Physics, vol 195. Springer, Cham. https://doi.org/10.1007/978-3-319-56422-7_8

Download citation

Publish with us

Policies and ethics