Skip to main content

Structure, Morphology, and Properties of Copper-Containing Polymer Nanocomposites

  • Conference paper
  • First Online:
Nanophysics, Nanomaterials, Interface Studies, and Applications (NANO 2016)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 195))

Included in the following conference series:

  • 1337 Accesses

Abstract

The morphology, structural organization, and thermomechanical and antimicrobial properties of nanocomposites prepared involving a natural and synthetic polymers – pectin, polyethyleneimine, and Cu/Cu2O or Cu nanoparticles – obtained by the chemical and thermal reduction of copper ions in the interpolyelectrolyte–metal complexes have been investigated. Such type of nanocomposites with Cu/Cu2O core–shell nanoparticles incorporated into polymer matrix is obtained due to the chemical reduction of Cu2+ ions by NaBH4 in the interpolyelectrolyte complex, and appearance of the copper’s metallic phase is observed in full extent while BH4 : Cu2+molar ratio being equal to 6.0. Applying thermomechanical analysis, it was observed that transformation of interpolyelectrolyte–metal complexes into nanocomposites results in decreasing of their glass-transition temperature. It is defined that Cu2+ ions thermal reduction in interpolyelectrolyte–metal complexes bulk (while films are heated to the optimal temperature around 170 °С) results in nanocomposites based on interpolyelectrolyte complexes “pectin–polyethyleneimine” and Cu nanoparticles being formed. It has been shown by thermomechanical analysis that the optimal time for complete thermal reduction of Cu2+ ions to metallic copper at T = 170 °С is 30 min. The antimicrobial investigations of the elaborated nanocomposites revealed they possess a high antimicrobial activity against S. aureus and E. coli strains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gates BC, Guezi L, Knosinger H (1986) Metal clusters in catalysis. Elsevier, Amsterdam

    Google Scholar 

  2. Pomogailo AD, Rozenberg AS, Uflyand IE (2000) Metal nanoparticles in polymers. Khimiya, Moscow. [in Russian]

    Google Scholar 

  3. Nicolais L (2005) Metal_polymer nanocomposites. Wiley, New York

    Google Scholar 

  4. Zezin AA (2016) Synthesis of hybrid materials in polyelectrolyte matrixes: control over sizes and spatial organization of metallic nanostructures. Pol Sci C 58:118–130

    Google Scholar 

  5. Kaur R, Giordano C, Gradzielski M, Mehta SK (2014) Synthesis of highly stable, water-dispersible copper nanoparticles as catalysts for nitrobenzene reduction. Chem Asian J 9:189–198

    Article  Google Scholar 

  6. Prucek R, Kvitek L, Panacek A, Vancurova L, Soukupova J, Jancik D, Zboril R (2009) Polyacrylate-assisted synthesis of stable copper nanoparticles and copper(I) oxide nanocubes with high catalytic efficiency. J Mater Chem 19:8463–8469

    Article  Google Scholar 

  7. Wang Y, Asefa T (2010) Poly(allylamine)-stabilized colloidal copper nanoparticles: synthesis, morphology, and their surface-enhanced Raman scattering properties. Langmuir 26:7469–7474

    Article  Google Scholar 

  8. Bakar A, De VV, Zezin AA, Abramchuk SS, Güven O, Feldman VI (2012) Spatial organization of a metal–polymer nanocomposite obtained by the radiation-induced reduction of copper ions in the poly(allylamine)–poly(acrylic acid)–Cu2+ system. Mendeleev Commun 22:211–212

    Article  Google Scholar 

  9. Ruiz P, Macanas J, Munoz M, Muraviev DN (2011) Intermatrix synthesis: easy technique permitting preparation of polymer-stabilized nanoparticles with desired composition and structure. Nanoscale Res Lett 6:343–348

    Article  ADS  Google Scholar 

  10. Zezin AA, Feldman VI, Dudnikov AV, Zezin SB, Abramchuk SS, Belopushkin SI (2009) Reduction of copper(II) ions in polyacrylic acid–polyethyleneimine complexes using x-ray radiation. High Energy Chem 43:100–104

    Article  Google Scholar 

  11. Pergushov DV, Zezin AA, Zezin AB, Müller AHE (2014) Advanced functional structures based on interpolyelectrolyte complexes. Adv Polym Sci 255:173–226

    Article  Google Scholar 

  12. Liu X, Geng B, Du Q, Ma J, Liu X (2007) Temperature-controlled self-assembled synthesis of CuO, CuO2, and Cu nanoparticles through a single-precursor route. Mater Sci Eng A 448:7–14

    Article  Google Scholar 

  13. Kim YH, Lee DK, Jo BG, Jeong JH, Kang YS (2006) Synthesis of oleate capped Cu nanoparticles by thermal decomposition. Colloids Surf A 284–285:364–368

    Google Scholar 

  14. Nasibulin AG, Ahonen PP, Richard O, Kauppinen EI, Altman IS (2001) Copper and copper oxide nanoparticle formation by chemical vapor nucleation from copper(II) acetylacetonate. J Nanopart Res 3:383–398

    Article  Google Scholar 

  15. Daroczi L, Beck MT, Beke DL, Kis-Varga M, Harasztosi L, Takacs N (1998) Production of Fe and Cu nanocrystalline particles by thermal decomposition of ferro- and copper-cyanides. Mater Sci Forum 319:269–272

    Google Scholar 

  16. Chen S, Sommers JM (2001) Alkanethiolate-protected copper nanoparticles: spectroscopy, electrochemistry, and solid-state morphological evolution. J Phys Chem B 105:8816–8820

    Article  Google Scholar 

  17. Zhu H, Zhang C, Yin Y (2005) Novel synthesis of copper nanoparticles: influence of the synthesis conditions on the particle size. Nanotechnology 16:3079–3083

    Article  ADS  Google Scholar 

  18. Johi SS, Patil SF, Iyer V, Mahumuni S (1998) Radiation induced synthesis and characterization of copper nanoparticles. Nanostruct Mater 10:1135–1144

    Article  Google Scholar 

  19. Pileni MP, Ninham BW, Gulik-Krzywicki Т, Tanori J, Lisiecki I, Filankembo A (1999) Direct relationship between shape and size of template and synthesis of copper metal particles. Adv Mater 11:1358–1362

    Article  Google Scholar 

  20. Song RG, Yamaguchi M, Nishimura O, Suzuki M (2007) Investigation of metal nanoparticles produced by laser ablation and their catalytic activity. Appl Surf Sci 253:3093–3097

    Article  ADS  Google Scholar 

  21. Park BK, Jeong SH, Kim DJ, Moon JH, Lim SK, Kim JS (2007) Synthesis and size control of monodisperse copper nanoparticles by polyol method. J Colloid Interface Sci 311:417–424

    Article  ADS  Google Scholar 

  22. Xin-ling T, Ling R, Ling-na S, Wei-guo I, Min-hua C, Chang-wen H (2006) A solvothermal route to Cu2O nanocubes and Cu nanoparticles. Chem Res Chin Univ 22:547–551

    Article  Google Scholar 

  23. Dash NA, Raj CP, Gedanken A (1998) Synthesis, characterization, and properties of metallic copper nanoparticles. Chem Mater 10:1446–1452

    Article  Google Scholar 

  24. Banasiuk R, Frackowiak JE, Krychowiak M, Matuszewska M, Kawiak A, Ziabka M, Lendzion-Bielun Z, Narajczyk M, Krolick A (2016) Synthesis of antimicrobial silver nanoparticles through a photomediated reaction in an aqueous environment. Int J Nanomedicine 11:315–324

    Google Scholar 

  25. Garciduenas-Pina C, Medina-Ramirez IE, Guzman P, Rico-Martinez R, Morales-Dominguez JF, Rubio-Franchini I (2016) Evaluation of the antimicrobial activity of nanostructured materials of titanium dioxide doped with silver and/or copper and their effects on Arabidopsis thaliana. Int J Photoenergy 1:1–14

    Article  Google Scholar 

  26. Kobylinskyi SM, Riabov SV, Kercha YY (2005) Chitosan modification by polyethyleneimines. Vopr Khim Khim Tekhnol 5:28–33. [in Ukrainian]

    Google Scholar 

  27. Kratky O, Pilz I, Schmitz PJ (1966) Absolute intensity measurement of small-angle x-ray scattering by means of a standard sample. J Colloid Interface Sci 21:24–34

    Article  ADS  Google Scholar 

  28. Case CL, Johnson TR (1984) Laboratory experiments in microbiology. Benjamin Cummings Pub Inc., California

    Google Scholar 

  29. Shtompel’ VI, Kercha YY (2008) Structure of linear polyurethanes. Naukova dumka, Kiev. [in Russian]

    Google Scholar 

  30. Gin’e A (1961) X-ray diffraction of crystals. Theory and practice. Fizmatgiz, Moscow. [in Russian]

    Google Scholar 

  31. Ruland W (1971) Small-angle scattering of two-phase systems: determination and significance of systematic deviations from Porod’s law. J Appl Crystallogr 4:70–73

    Article  Google Scholar 

  32. Perret R, Ruland W (1971) Eine verbesserte Auswertungsmethode fur die Rontgenkleinewin-kelstreuung von Hochpolymeren. Kolloid Z – Z Polymere 247:835–843

    Article  Google Scholar 

  33. Porod G (1982) In: Glatter O, Kratky O (eds) Small-angle X-ray scattering. Acad. Press, London

    Google Scholar 

  34. Demchenko V, Shtompel’ V, Riabov S (2016) Nanocomposites based on interpolyelectrolyte complex and Cu/Cu2O core–shell nanoparticles: structure, thermomechanical and electric properties. Eur Polym J 75:310–316

    Article  Google Scholar 

  35. Teitelbaum BJ (1979) Thermomechanical analysis of polymers. Nauka, Moscow. [in Russian]

    Google Scholar 

  36. Demchenko VL, Shtompel’ VI, Riabov SV (2015) DC field effect on the structuring and thermomechanical and electric properties of nanocomposites formed from pectin–Cu2+–polyethyleneimine ternary polyelectrolyte–metal complexes. Pol Sci A 57:635–643

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Demchenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Demchenko, V., Riabov, S., Rybalchenko, N., Shtompel’, V. (2017). Structure, Morphology, and Properties of Copper-Containing Polymer Nanocomposites. In: Fesenko, O., Yatsenko, L. (eds) Nanophysics, Nanomaterials, Interface Studies, and Applications . NANO 2016. Springer Proceedings in Physics, vol 195. Springer, Cham. https://doi.org/10.1007/978-3-319-56422-7_49

Download citation

Publish with us

Policies and ethics