Skip to main content

Influence of Free Volumes on Functional Properties of Modified Chalcogenide Glasses and Oxide Ceramics

  • Conference paper
  • First Online:
Nanophysics, Nanomaterials, Interface Studies, and Applications (NANO 2016)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 195))

Included in the following conference series:

Abstract

Influences of inner free-volume structure on the functional properties of chalcogenide GeSe2-Ga2Se3 and GeS2-Ga2S3-CsCl glasses as well as oxide Cu0.4Co0.4Ni0.4Mn1.8O4 and MgO-Al2O3 ceramics caused by their modification are investigated. It was shown that crystallization process in 80GeSe2-20Ga2Se3 glasses annealed at 380 °C for 25 and 50 h indicating specific free-volume fragmentation as well as decreasing of transmittance and shifts of optical transmission edge in a long-wave side. It is established that CsCl additions in GeS2-Ga2S3 glasses result in void agglomeration and shift of the absorption edge toward shorter wavelengths. In Cu0.1Ni0.8Co0.2Mn1.9O4 ceramics with 8% of NiO phase addition, positron trapping sites near grain boundaries are formed. It is shown that water vapor modifies defects located near grain boundaries in MgO-Al2O3 ceramics sintered at 1300 °C, the process being accompanied by void fragmentation at water adsorption with further void agglomeration at water desorption after drying. These ceramics are humidity sensitive in the region from 30% to 98% of RH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhao X, Ren X, Sun C, Zhang X, Si Y, Yan C, Xu J, Xue D (2008) Morphology evolution at nano- to micro-scale. Funct Mater Lett 1(03):167–172. http://dx.doi.org/10.1142/S1793604708000393

    Article  Google Scholar 

  2. Wilson SA, Jourdain RP, Zhang Q, Dorey RA, Bowen CR, Willander M, Al-hilli SM, Nur O, Quandt E, Johansson C, Pagounis E, Kohl M, Matovic J, Samel B, Wijngaart W, Jager EWH, Carlsson D, Djinovic Z, Wegener M, Moldovan C, Iosub R, Abad E, Wendlandt M, Rusu C, Persson K (2007) New materials for micro-scale sensors and actuators: an engineering review. Materials Science and Engineering: R: Reports 56(1):1–129. http://dx.doi.org/10.1016/j.mser.2007.03.001

    Article  Google Scholar 

  3. Cain M, Morrell R (2001) Nanostructured ceramics: a review of their potential. Appl Organomet Chem 15(5):321–330. doi:10.1002/aoc.153

    Article  Google Scholar 

  4. Dutta J, Hofmann H (2003) Nanomaterials. Swiss Federal Institute of Technology. Lausanne, pp 9–20

    Google Scholar 

  5. Gabor L, Hornyak JJ, Moore HF, Dutta J (2008) Fundamentals of nanotechnology. CRC Press, Boca Raton, p 786

    Google Scholar 

  6. Donth EJ (2013) The glass transition: relaxation dynamics in liquids and disordered materials, vol 48. Springer Science & Business Media, Berlin, p 418

    Google Scholar 

  7. Kierlik E, Monson PA, Rosinberg ML, Sarkisov L, Tarjus G (2001) Capillary condensation in disordered porous materials: hysteresis versus equilibrium behavior. Phys Rev Lett 87(5):055701. https://doi.org/10.1103/PhysRevLett.87.055701

    Article  ADS  Google Scholar 

  8. Holand W, George H, Beall GH (2012) Glass ceramic technology. Wiley, Hoboken, p 440

    Book  Google Scholar 

  9. Seddon AB (1995) Chalcogenide glasses: a review of their preparation, properties and applications. J Non-Cryst Solids 184:44–50. http://dx.doi.org/10.1016/0022-3093(94)00686-5

    Article  ADS  Google Scholar 

  10. Zakery A, Elliott SR (2003) Optical properties and applications of chalcogenide glasses: a review. J Non-Cryst Solids 330(1):1–12. http://dx.doi.org/10.1016/j.jnoncrysol.2003.08.064

    Article  ADS  Google Scholar 

  11. Li JG, Ikegami T, Lee JH, Mori T (2000) Fabrication of translucent magnesium aluminum spinel ceramics. J Am Ceram Soc 83(11):2866–2868. doi:10.1111/j.1151-2916.2000.tb01648.x

    Article  Google Scholar 

  12. Dorey RA, Rocks S, Dauchy F, Navarro A (2006) New advances in forming functional ceramics for micro devices. Advances in Science and Technology 45:2440–2447. doi:10.4028/www.scientific.net/AST.45.2440

    Article  Google Scholar 

  13. Zakery A, Elliott SR (2007) Optical switching in Chalcogenide glasses. In: Optical nonlinearities in chalcogenide glasses and their applications. Springer, Berlin/Heidelberg, pp 129–150. doi:10.1007/978-3-540-71068-4_6

    Google Scholar 

  14. Elliott SR (1977) A theory of ac conduction in chalcogenide glasses. Philos Mag 36(6):1291–1304. http://dx.doi.org/10.1080/14786437708238517

    Article  ADS  Google Scholar 

  15. Eggleton BJ, Luther-Davies B, Richardson K (2011) Chalcogenide photonics. Nat Photonics 5(3):141–148. doi:10.1038/nphoton.2011.309

    ADS  Google Scholar 

  16. Klym H, Ingram A, Shpotyuk O (2016) Free-volume nanostructural transformation in crystallized GeS2–Ga2S3–CsCl glasses. Mater Werkst 47(2–3):198–202. doi:10.1002/mawe.201600476

    Article  Google Scholar 

  17. Ren J, Wagner T, Bartos M, Frumar M, Oswald J, Kincl M, Frumarova B, Chen G (2011) Intense near-infrared and midinfrared luminescence from the Dy3+-doped GeSe2–Ga2Se3–MI (M= K, Cs, Ag) chalcohalide glasses at 1.32, 1.73, and 2.67 μm. J Appl Phys 109(3):033105. http://dx.doi.org/10.1063/1.3531555

    Article  ADS  Google Scholar 

  18. Calvez L, Lucas P, Rozé M, Ma HL, Lucas J, Zhang XH (2007) Influence of gallium and alkali halide addition on the optical and thermo-mechanical properties of GeSe2-Ga2Se3 glass. Applied Physics A 89(1):183–188. doi:10.1007/s00339-007-4081-y

    Article  Google Scholar 

  19. Arai H, Seiyama T (2008) Humidity sensors. In: Sensors set: a comprehensive survey. Wiley-VCH Verlag GmbH, Weinheim, pp 981–1012. doi:10.1002/9783527619269.ch7b

    Google Scholar 

  20. Fraden J (2004) Handbook of modern sensors: physics, designs, and applications. Springer Science & Business Media, Cham

    Google Scholar 

  21. Klym H, Ingram A, Shpotyuk O, Calvez L, Petracovschi E, Kulyk B, Serkiz R, Szatanik R (2015) ‘Cold’ crystallization in nanostructurized 80GeSe2-20Ga2Se3 glass. Nanoscale Res Lett 10(1):1–8. doi:10.1186/s11671-015-0775-9

    Article  Google Scholar 

  22. Shpotyuk O, Calvez L, Petracovschi E, Klym H, Ingram A, Demchenko P (2014) Thermally-induced crystallization behaviour of 80GeSe2-20Ga2Se3 glass as probed by combined X-ray diffraction and PAL spectroscopy. J Alloys Compd 582:323–327. http://dx.doi.org/10.1016/j.jallcom.2013.07.127

    Article  Google Scholar 

  23. Shpotyuk O, Filipecki J, Ingram A, Golovchak R, Vakiv M, Klym H, Balitska V, Shpotyuk M, Kozdras A (2015) Positronics of subnanometer atomistic imperfections in solids as a high-informative structure characterization tool. Nanoscale Res Lett 10(1):1–5. doi:10.1186/s11671-015-0764-z

    Article  Google Scholar 

  24. Masselin P, Le Coq D, Calvez L, Petracovschi E, Lépine E, Bychkov E, Zhang X (2012) CsCl effect on the optical properties of the 80GeS2–20Ga2S3 base glass. Applied Physics A 106(3):697–702. doi:10.1007/s00339-011-6668-6

    Article  Google Scholar 

  25. Klym H, Ingram A, Shpotyuk O, Karbovnyk I (2016) Influence of CsCl addition on the nanostructured voids and optical properties of 80GeS2-20Ga2S3 glasses. Opt Mater 59:39–42. http://dx.doi.org/10.1016/j.optmat.2016.03.004

    Article  ADS  Google Scholar 

  26. Klym H, Ingram A, Shpotyuk O, Hotra O, Popov AI (2016) Positron trapping defects in free-volume investigation of Ge-Ga-S-CsCl glasses. Radiat Meas 90:117–121. http://dx.doi.org/10.1016/j.radmeas.2016.01.023

    Article  Google Scholar 

  27. Shpotyuk O, Balitska V, Brunner M, Hadzaman I, Klym H (2015) Thermally-induced electronic relaxation in structurally-modified Cu0.1Ni0.8Co0.2Mn1.9O4 spinel ceramics. Phys B Condens Matter 459:116–121. http://dx.doi.org/10.1016/j.physb.2014.11.023

    Article  ADS  Google Scholar 

  28. Klym H, Hadzaman I, Shpotyuk O, Fu Q, Luo W, Deng J (2013) Integrated thick-film p-i-p+ structures based on spinel ceramics. Solid State Phenom 200:156–161. http://www.scientific.net/SSP.200.156

    Article  Google Scholar 

  29. Klym H, Balitska V, Shpotyuk O, Hadzaman I (2014) Degradation transformation in spinel-type functional thick-film ceramic materials. Microelectron Reliab 54(12):2843–2848. http://dx.doi.org/10.1016/j.microrel.2014.07.137

    Article  Google Scholar 

  30. Klym H, Hadzaman I, Ingram A, Shpotyuk O (2013) Multilayer thick-film structures based on spinel ceramics 1. Can J Phys 92(7/8):822–826. doi:10.1139/cjp-2013-0597

    Article  ADS  Google Scholar 

  31. Klym H, Hadzaman I, Shpotyuk O, Brunner M (2014) Integrated thick-film nanostructures based on spinel ceramics. Nanoscale Res Lett 9(1):1–6. doi:10.1186/1556-276X-9-149

    Article  Google Scholar 

  32. Vakiv M, Hadzaman I, Klym H, Shpotyuk O, Brunner M (2011) Multifunctional thick-film structures based on spinel ceramics for environment sensors. J Phys Conf Ser 289(1):012011. http://dx.doi.org/10.1088/1742-6596/289/1/012011

    Article  Google Scholar 

  33. Shpotyuk O, Brunner M, Hadzaman I, Balitska V, Klym H (2016) Analytical description of degradation-relaxation transformations in nanoinhomogeneous spinel ceramics. Nanoscale Res Lett 11(1):499. doi:10.1186/s11671-016-1722-0

    Article  ADS  Google Scholar 

  34. Klym H, Ingram A, Shpotyuk O, Hadzaman I, Hotra O, Kostiv Y (2016) Nanostructural free-volume effects in humidity-sensitive MgO-Al2O3 ceramics for sensor applications. J Mater Eng Perform 25(3):866–873. doi:10.1007/s11665-016-1931-9

    Article  Google Scholar 

  35. Klym H, Ingram A, Shpotyuk O, Hadzaman I, Solntsev V (2016) Water-vapor sorption processes in nanoporous MgO-Al2O3 ceramics: the PAL spectroscopy study. Nanoscale Res Lett 11(1):1. doi:10.1186/s11671-016-1352-6

    Article  Google Scholar 

  36. Klym H, Hadzaman I, Shpotyuk O (2015) Influence of sintering temperature on pore structure and electrical properties of technologically modified MgO-Al2O3 ceramics. Mater Sci 21(1):92–95. http://dx.doi.org/10.5755/j01.ms.21.1.5189

    Google Scholar 

  37. Karbovnyk I, Bolesta I, Rovetskii I, Velgosh S, Klym H (2014) Studies of CdI2-Bi3 microstructures with optical methods, atomic force microscopy and positron annihilation spectroscopy. Materials Science-Poland 32(3):391–395. doi:10.2478/s13536-014-0215-z

    Article  ADS  Google Scholar 

  38. Kansy J (1996) Microcomputer program for analysis of positron annihilation lifetime spectra. Nucl Instrum Methods Phys Res, Sect A 374(2):235–244. http://dx.doi.org/10.1016/0168-9002(96)00075-7

    Article  ADS  Google Scholar 

  39. Klym H, Ingram A, Shpotyuk O, Filipecki J, Hadzaman I (2011) Structural studies of spinel manganite ceramics with positron annihilation lifetime spectroscopy. J Phys Conf Ser 289(1):012010. http://iopscience.iop.org/article/10.1088/1742-6596/289/1/012010/meta

    Article  Google Scholar 

  40. Shpotyuk O, Filipecki J (2003) Free volume in vitreous chalcogenide semiconductors: possibilities of positron annihilation lifetime study. Wyd-wo WSP w Czestochowie, Czestochowa

    Google Scholar 

  41. Klym H, Ingram A (2007) Unified model of multichannel positron annihilation in nanoporous magnesium aluminate ceramics. J Phys Conf Ser 79(1):012014. http://dx.doi.org/10.1088/1742-6596/79/1/012014

    Article  Google Scholar 

  42. Klym H, Karbovnyk I, Guidi MC, Hotra O, Popov AI (2016) Optical and vibrational spectra of CsCl-enriched GeS2-Ga2S3 glasses. Nanoscale Res Lett 11(1):1–6. doi:10.1186/s11671-016-1350-8

    Article  Google Scholar 

  43. Ingram A, Golovchak R, Kostrzewa M, Wacke S, Shpotyuk M, Shpotyuk O (2012) Compositional dependences of average positron lifetime in binary as-S/se glasses. Phys B Condens Matter 407(4):652–655. http://dx.doi.org/10.1016/j.physb.2011.11.052

    Article  ADS  Google Scholar 

  44. Calvez L, Lin C, Rozé M, Ledemi Y, Guillevic E, Bureau B, Allix M, Zhang X (2010) Similar behaviors of sulfide and selenide-based chalcogenide glasses to form glass-ceramics. Proc SPIE 7598:759802-1-16. doi:10.1117/12.840968

  45. Klym H, Ingram A, Shpotyuk O, Hadzaman I, Solntsev V, Hotra O, Popov AI (2016) Positron annihilation characterization of free volume in micro-and macro-modified Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics. Low Temperature Phys 42(7):601–605. http://dx.doi.org/10.1063/1.4959021

    Article  ADS  Google Scholar 

  46. Krause-Rehberg R, Leipner HS (1999) Positron annihilation in semiconductors. Defect studies. Springer, Berlin/Heidelberg/New York, p 378

    Book  Google Scholar 

  47. Klym H, Ingram A, Shpotyuk O, Filipecki J (2010) PALS as characterization tool in application to humidity-sensitive electroceramics. 27th international conference on microelectronics proceedings (MIEL). Proceedings of the 27th International Conference, pp 239–242. doi:10.1109/MIEL.2010.5490492

  48. Nambissan PMG, Upadhyay C, Verma HC (2003) Positron lifetime spectroscopic studies of nanocrystalline ZnFe2O4. J Appl Phys 93:6320. http://dx.doi.org/10.1063/1.1569973

    Article  ADS  Google Scholar 

  49. Leifer I, Patro RK (2002) The bubble mechanism for methane transport from the shallow sea bed to the surface: a review and sensitivity study. Cont Shelf Res 22(16):2409–2428. http://dx.doi.org/10.1016/S0278-4343(02)00065-1

    Article  ADS  Google Scholar 

  50. Ljunggren S, Eriksson JC (1997) The lifetime of a colloid-sized gas bubble in water and the cause of the hydrophobic attraction. Colloids Surf A Physicochem Eng Asp 129:151–155. http://dx.doi.org/10.1016/S0927-7757(97)00033-2

    Article  Google Scholar 

  51. Grosman A, Ortega C (2005) Nature of capillary condensation and evaporation processes in ordered porous materials. Langmuir 21:10515–10521. doi:10.1021/la051030o

    Article  Google Scholar 

  52. Tao SJ (1972) Positronium annihilation in molecular substance. J Chem Phys 56(11):5499–5510. http://dx.doi.org/10.1063/1.1677067

    Article  ADS  Google Scholar 

  53. Eldrup M, Lightbody D, Sherwood JN (1981) The temperature dependence of positron lifetimes in solid pivalic acid. Chem Phys 63:51–58. http://dx.doi.org/10.1016/0301-0104(81)80307-2

    Article  ADS  Google Scholar 

Download references

Acknowledgment

H. Klym thanks the Ministry of Education and Science of Ukraine for the support (grant No 0116U004411).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Klym .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Klym, H. et al. (2017). Influence of Free Volumes on Functional Properties of Modified Chalcogenide Glasses and Oxide Ceramics. In: Fesenko, O., Yatsenko, L. (eds) Nanophysics, Nanomaterials, Interface Studies, and Applications . NANO 2016. Springer Proceedings in Physics, vol 195. Springer, Cham. https://doi.org/10.1007/978-3-319-56422-7_36

Download citation

Publish with us

Policies and ethics