Skip to main content

Next-Generation Sequencing Based Clinical Molecular Diagnosis of Primary Immunodeficiency Diseases

  • Chapter
  • First Online:
Next Generation Sequencing Based Clinical Molecular Diagnosis of Human Genetic Disorders

Abstract

Primary immunodeficiency diseases (PIDs) are a group of disorders caused by defects in one or multiple components of the immune system. PID patients usually present with recurrent or severe infections and can be difficult to manage with conventional treatments. The types of infections in patients with PIDs are related to which arm of the immune system is affected, and often provide the first clues to the nature of the immunologic defect. Without appropriate therapy, many patients die in infancy or early childhood. Because of the clinical heterogeneity and broadly overlapping phenotypes among the PIDs, it is often challenging to reach a definitive clinical diagnosis. Compelling evidence has demonstrated that most PIDs are genetic disorders, and there are more than 240 genes that have been identified in association with different PIDs. Accurate gene sequencing in PIDs not only can bring a definite molecular diagnosis at an early stage, but can also improve the clinical prognosis of patients by facilitating initiation of appropriate therapies based on the underlying diagnosis. However, Sanger-based single gene sequencing is time-consuming and costly if multiple genes need to be analyzed sequentially due to genetic and phenotypic heterogeneity. Thus, it is not practical for the prompt definitive diagnosis of PIDs. Next-generation sequencing (NGS) is a recently developed, massively parallel sequencing technology, which can sequence all targeted regions (multiple genes, whole exome, or whole genome) of the human genome simultaneously. In fact, the NGS technology has made it possible to sequence all known disease causing genes in one experiment. As a result, NGS has become a primary approach for both clinical molecular diagnosis and discovery of novel genes in Mendelian human disorders (Gilissen et al. Genome Biol 12:228, 2011; Shendure and Ji Nat Biotechnol 26:1135–1145, 2008). In this chapter, we describe the most recent applications of NGS technology to PIDs with a focus on clinical molecular diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACMG:

American College of Medical Genetics

ALPS:

Autoimmune lymphoproliferative syndrome

CID:

Combined immunodeficiency

CTP:

Cytidine triphosphate

FHL:

Familial hemophagocytic lymphohistiocytosis

HGMD:

Human Gene Mutation Database

HLH:

Hemophagocytic lymphohistiocytosis

IUIS:

International Union of Immunological Societies

NGS:

Next-generation sequencing

PIDs:

Primary immunodeficiency diseases

SCID:

Severe combined immunodeficiency

SNP:

Single-nucleotide polymorphism

WES:

Whole exome sequencing

WGS:

Whole genome sequencing

XLP:

X-linked lymphoproliferative disease

References

  1. Ochs, H.D., Hitzig, W.H.: History of primary immunodeficiency diseases. Curr. Opin. Allergy Clin. Immunol. 12, 577–587 (2012)

    CAS  PubMed  Google Scholar 

  2. Joshi, A.Y., Iyer, V.N., Hagan, J.B., St Sauver, J.L., Boyce, T.G.: Incidence and temporal trends of primary immunodeficiency: a population-based cohort study. Mayo Clin. Proc. 84, 16–22 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bousfiha, A.A., Jeddane, L., Ailal, F., Benhsaien, I., Mahlaoui, N., Casanova, J.L., et al.: Primary immunodeficiency diseases worldwide: more common than generally thought. J. Clin. Immunol. 33, 1–7 (2013)

    Article  PubMed  Google Scholar 

  4. Boyle, J.M., Buckley, R.H.: Population prevalence of diagnosed primary immunodeficiency diseases in the United States. J. Clin. Immunol. 27, 497–502 (2007)

    Article  CAS  PubMed  Google Scholar 

  5. Al-Herz, W., Bousfiha, A., Casanova, J.L., Chatila, T., Conley, M.E., Cunningham-Rundles, C., et al.: Primary immunodeficiency diseases: an update on the classification from the international union of immunological societies expert committee for primary immunodeficiency. Front. Immunol. 5, 162 (2014)

    PubMed  PubMed Central  Google Scholar 

  6. Chinen, J., Notarangelo, L.D., Shearer, W.T.: Advances in basic and clinical immunology in 2013. J. Allergy Clin. Immunol. 133, 967–976 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gilissen, C., Hoischen, A., Brunner, H.G., Veltman, J.A.: Unlocking mendelian disease using exome sequencing. Genome Biol. 12, 228 (2011)

    Google Scholar 

  8. Shendure, J., Ji, H.: Next-generation DNA sequencing. Nat. Biotechnol. 26, 1135–1145 (2008)

    Google Scholar 

  9. Beaulieu, C.L., Majewski, J., Schwartzentruber, J., Samuels, M.E., Fernandez, B.A., Bernier, F.P., et al.: FORGE Canada consortium: outcomes of a 2-year national rare-disease gene-discovery project. Am. J. Hum. Genet. 94, 809–817 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Biesecker, L.G., Green, R.C.: Diagnostic clinical genome and exome sequencing. N. Engl. J. Med. 370, 2418–2425 (2014)

    Article  PubMed  Google Scholar 

  11. Saunders, C.J., Miller, N.A., Soden, S.E., Dinwiddie, D.L., Noll, A., Alnadi, N.A., et al.: Rapid whole-genome sequencing for genetic disease diagnosis in neonatal intensive care units. Sci. Transl. Med. 4, 154ra35 (2012)

    Article  Google Scholar 

  12. Nijman, I.J., van Montfrans, J.M., Hoogstraat, M., Boes, M.L., van de Corput, L., Renner, E.D., et al.: Targeted next-generation sequencing: a novel diagnostic tool for primary immunodeficiencies. J. Allergy Clin. Immunol. 133, 529–534 (2014)

    Article  CAS  PubMed  Google Scholar 

  13. Dickinson, R.E., Griffin, H., Bigley, V., Reynard, L.N., Hussain, R., Haniffa, M., et al.: Exome sequencing identifies GATA-2 mutation as the cause of dendritic cell, monocyte, B and NK lymphoid deficiency. Blood. 118, 2656–2658 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mousallem, T., Urban, T.J., McSweeney, K.M., Kleinstein, S.E., Zhu, M., Adeli, M., et al.: Clinical application of whole-genome sequencing in patients with primary immunodeficiency. J. Allergy Clin. Immunol. 136(2), 476–9.e6 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jones, M.A., Bhide, S., Chin, E., Ng, B.G., Rhodenizer, D., Zhang, V.W., et al.: Targeted polymerase chain reaction-based enrichment and next generation sequencing for diagnostic testing of congenital disorders of glycosylation. Genet. Med. Off. J. Am. Coll. Med. Genet. 13, 921–932 (2011)

    CAS  Google Scholar 

  16. Ku, C.S., Naidoo, N., Pawitan, Y.: Revisiting mendelian disorders through exome sequencing. Hum. Genet. 129, 351–370 (2011)

    Article  PubMed  Google Scholar 

  17. Botstein, D., Risch, N.: Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nat. Genet. 33(Suppl), 228–237 (2003)

    Article  CAS  PubMed  Google Scholar 

  18. Yang, Y., Muzny, D.M., Reid, J.G., Bainbridge, M.N., Willis, A., Ward, P.A., et al.: Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N. Engl. J. Med. 369, 1502–1511 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rabbani, B., Tekin, M., Mahdieh, N.: The promise of whole-exome sequencing in medical genetics. J. Hum. Genet. 59, 5–15 (2014)

    Article  CAS  PubMed  Google Scholar 

  20. Taylor, J.C., Martin, H.C., Lise, S., Broxholme, J., Cazier, J.B., Rimmer, A., et al.: Factors influencing success of clinical genome sequencing across a broad spectrum of disorders. Nat. Genet. 47(7), 717–726 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Veenstra, D.L., Piper, M., Haddow, J.E., Pauker, S.G., Klein, R., Richards, C.S., et al.: Improving the efficiency and relevance of evidence-based recommendations in the era of whole-genome sequencing: an EGAPP methods update. Genet. Med. Off. J. Am. Coll. Med. Genet. 15, 14–24 (2013)

    Google Scholar 

  22. Robinson, P.N., Krawitz, P., Mundlos, S.: Strategies for exome and genome sequence data analysis in disease-gene discovery projects. Clin. Genet. 80, 127–132 (2011)

    Article  PubMed  Google Scholar 

  23. Mardis, E.R.: Next-generation sequencing platforms. Annu Rev Anal Chem (Palo Alto, Calif). 6, 287–303 (2013)

    Article  CAS  Google Scholar 

  24. Raje, N., Soden, S., Swanson, D., Ciaccio, C.E., Kingsmore, S.F., Dinwiddie, D.L.: Utility of next generation sequencing in clinical primary immunodeficiencies. Curr. Allergy Asthma Rep. 14, 468 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  25. Stoddard, J.L., Niemela, J.E., Fleisher, T.A., Rosenzweig, S.D.: Targeted NGS: a cost-effective approach to molecular diagnosis of PIDs. Front. Immunol. 5, 531 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rothberg, J.M., Hinz, W., Rearick, T.M., Schultz, J., Mileski, W., Davey, M., et al.: An integrated semiconductor device enabling non-optical genome sequencing. Nature. 475, 348–352 (2011)

    Article  CAS  PubMed  Google Scholar 

  27. Moens, L.N., Falk-Sorqvist, E., Asplund, A.C., Bernatowska, E., Smith, C.I., Nilsson, M.: Diagnostics of primary immunodeficiency diseases: a sequencing capture approach. PLoS One. 9, e114901 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  28. Al-Mousa, H., Abouelhoda, M., Monies, D.M., Al-Tassan, N., Al-Ghonaium, A., Al-Saud, B., et al.: Unbiased targeted next-generation sequencing molecular approach for primary immunodeficiency diseases. J. Allergy Clin. Immunol. 137, 1780–1787 (2016)

    Article  CAS  PubMed  Google Scholar 

  29. Rosado, F.G., Kim, A.S.: Hemophagocytic lymphohistiocytosis: an update on diagnosis and pathogenesis. Am. J. Clin. Pathol. 139, 713–727 (2013)

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, K., Chandrakasan, S., Chapman, H., Valencia, C.A., Husami, A., Kissell, D., et al.: Synergistic defects of different molecules in the cytotoxic pathway lead to clinical familial hemophagocytic lymphohistiocytosis. Blood. 124, 1331–1334 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jordan, M.B., Allen, C.E., Weitzman, S., Filipovich, A.H., McClain, K.L.: How I treat hemophagocytic lymphohistiocytosis. Blood. 118, 4041–4052 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang, K., Filipovich, A.H., Johnson, J., Marsh, R.A., Villanueva, J.: Hemophagocytic lymphohistiocytosis, familial. In: Pagon, R.A., Adam, M.P., Ardinger, H.H., Wallace, S.E., Amemiya, A., Bean, L.J.H., et al. (eds.) GeneReviews(R). University of Washington, Seattle. All rights reserved, Seattle (WA) (1993)

    Google Scholar 

  33. Allen, M., De Fusco, C., Legrand, F., Clementi, R., Conter, V., Danesino, C., et al.: Familial hemophagocytic lymphohistiocytosis: how late can the onset be? Haematologica. 86, 499–503 (2001)

    CAS  PubMed  Google Scholar 

  34. Henter, J.I., Horne, A., Arico, M., Egeler, R.M., Filipovich, A.H., Imashuku, S., et al.: HLH-2004: diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr. Blood Cancer. 48, 124–131 (2007)

    Article  PubMed  Google Scholar 

  35. Badolato, R., Prandini, A., Caracciolo, S., Colombo, F., Tabellini, G., Giacomelli, M., et al.: Exome sequencing reveals a pallidin mutation in a Hermansky-Pudlak-like primary immunodeficiency syndrome. Blood. 119, 3185–3187 (2012)

    Article  CAS  PubMed  Google Scholar 

  36. Dotta, L., Parolini, S., Prandini, A., Tabellini, G., Antolini, M., Kingsmore, S.F., et al.: Clinical, laboratory and molecular signs of immunodeficiency in patients with partial oculo-cutaneous albinism. Orphanet J. Rare Dis. 8, 168 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  37. Li, F.Y., Lenardo, M.J., Chaigne-Delalande, B.: Loss of MAGT1 abrogates the Mg2+ flux required for T cell signaling and leads to a novel human primary immunodeficiency. Magnes. Res. Off. organ Int. Soc. Dev. Res. Magnes. 24, S109–S114 (2011)

    CAS  Google Scholar 

  38. van Montfrans, J.M., Hoepelman, A.I., Otto, S., van Gijn, M., van de Corput, L., de Weger, R.A., et al.: CD27 deficiency is associated with combined immunodeficiency and persistent symptomatic EBV viremia. J. Allergy Clin. Immunol. 129, 787–93.e6 (2012)

    Article  PubMed  Google Scholar 

  39. Yang, X., Miyawaki, T., Kanegane, H.: SAP and XIAP deficiency in hemophagocytic lymphohistiocytosis. Pediatr. Int. Off. J. Japan Pediatr. Soc. 54, 447–454 (2012)

    Article  CAS  Google Scholar 

  40. Sperandeo, M.P., Andria, G., Sebastio, G.: Lysinuric protein intolerance: update and extended mutation analysis of the SLC7A7 gene. Hum. Mutat. 29, 14–21 (2008)

    Article  CAS  PubMed  Google Scholar 

  41. Shamsian, B.S., Rezaei, N., Alavi, S., Hedayat, M., Amin Asnafi, A., Pourpak, Z., et al.: Primary hemophagocytic lymphohistiocytosis in Iran: report from a single referral center. Pediatr. Hematol. Oncol. 29, 215–219 (2012)

    Article  PubMed  Google Scholar 

  42. Jessen, B., Bode, S.F., Ammann, S., Chakravorty, S., Davies, G., Diestelhorst, J., et al.: The risk of hemophagocytic lymphohistiocytosis in Hermansky-Pudlak syndrome type 2. Blood. 121, 2943–2951 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cullinane, A.R., Curry, J.A., Carmona-Rivera, C., Summers, C.G., Ciccone, C., Cardillo, N.D., et al.: A BLOC-1 mutation screen reveals that PLDN is mutated in Hermansky-Pudlak syndrome type 9. Am. J. Hum. Genet. 88, 778–787 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Linka, R.M., Risse, S.L., Bienemann, K., Werner, M., Linka, Y., Krux, F., et al.: Loss-of-function mutations within the IL-2 inducible kinase ITK in patients with EBV-associated lymphoproliferative diseases. Leukemia. 26, 963–971 (2012)

    Article  CAS  PubMed  Google Scholar 

  45. Li, F.Y., Chaigne-Delalande, B., Su, H., Uzel, G., Matthews, H., Lenardo, M.J.: XMEN disease: a new primary immunodeficiency affecting Mg2+ regulation of immunity against Epstein-Barr virus. Blood. 123, 2148–2152 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sivakumaran, T.A., Husami, A., Kissell, D., Zhang, W., Keddache, M., Black, A.P., et al.: Performance evaluation of the next-generation sequencing approach for molecular diagnosis of hereditary hearing loss. Otolaryngol. Head Neck Surg. Off. J. Am. Acad. Otolaryngol. Head and Neck Surg. 148, 1007–1016 (2013)

    Article  Google Scholar 

  47. Tewhey, R., Warner, J.B., Nakano, M., Libby, B., Medkova, M., David, P.H., et al.: Microdroplet-based PCR enrichment for large-scale targeted sequencing. Nat. Biotechnol. 27, 1025–1031 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Teachey, D.T., Seif, A.E., Grupp, S.A.: Advances in the management and understanding of autoimmune lymphoproliferative syndrome (ALPS). Br. J. Haematol. 148, 205–216 (2010)

    Article  CAS  PubMed  Google Scholar 

  49. Bleesing, J.J.H., Johnson, J., Zhang, K.: Autoimmune lymphoproliferative syndrome. In: Pagon, R.A., Adam, M.P., Ardinger, H.H., Wallace, S.E., Amemiya, A., Bean, L.J.H., et al. (eds.) GeneReviews(R). University of Washington, Seattle. All rights reserved, Seattle (WA) (1993)

    Google Scholar 

  50. Oliveira, J.B., Bleesing, J.J., Dianzani, U., Fleisher, T.A., Jaffe, E.S., Lenardo, M.J., et al.: Revised diagnostic criteria and classification for the autoimmune lymphoproliferative syndrome (ALPS): report from the 2009 NIH international workshop. Blood. 116, e35–e40 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rieux-Laucat, F., Le Deist, F., Fischer, A.: Autoimmune lymphoproliferative syndromes: genetic defects of apoptosis pathways. Cell Death Differ. 10, 124–133 (2003)

    Article  CAS  PubMed  Google Scholar 

  52. Niemela, J.E., Lu, L., Fleisher, T.A., Davis, J., Caminha, I., Natter, M., et al.: Somatic KRAS mutations associated with a human nonmalignant syndrome of autoimmunity and abnormal leukocyte homeostasis. Blood. 117, 2883–2886 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  53. Buckley, R.H.: Molecular defects in human severe combined immunodeficiency and approaches to immune reconstitution. Annu. Rev. Immunol. 22, 625–655 (2004)

    Article  CAS  PubMed  Google Scholar 

  54. Griffith, L.M., Cowan, M.J., Notarangelo, L.D., Puck, J.M., Buckley, R.H., Candotti, F., et al.: Improving cellular therapy for primary immune deficiency diseases: recognition, diagnosis, and management. J. Allergy Clin. Immunol. 124, 1152–60.e12 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  55. Rivers, L., Gaspar, H.B.: Severe combined immunodeficiency: recent developments and guidance on clinical management. Arch. Dis. Child. 100, 667–672 (2015)

    Article  PubMed  Google Scholar 

  56. Aloj, G., Giardino, G., Valentino, L., Maio, F., Gallo, V., Esposito, T., et al.: Severe combined immunodeficiences: new and old scenarios. Int. Rev. Immunol. 31, 43–65 (2012)

    Article  CAS  PubMed  Google Scholar 

  57. Puck, J.M., Pepper, A.E., Henthorn, P.S., Candotti, F., Isakov, J., Whitwam, T., et al.: Mutation analysis of IL2RG in human X-linked severe combined immunodeficiency. Blood. 89, 1968–1977 (1997)

    CAS  PubMed  Google Scholar 

  58. Verbsky, J., Thakar, M., Routes, J.: The Wisconsin approach to newborn screening for severe combined immunodeficiency. J. Allergy Clin. Immunol. 129, 622–627 (2012)

    Article  PubMed  Google Scholar 

  59. Villa, A., Santagata, S., Bozzi, F., Giliani, S., Frattini, A., Imberti, L., et al.: Partial V(D)J recombination activity leads to Omenn syndrome. Cell. 93, 885–896 (1998)

    Article  CAS  PubMed  Google Scholar 

  60. Corneo, B., Moshous, D., Gungor, T., Wulffraat, N., Philippet, P., Le Deist, F.L., et al.: Identical mutations in RAG1 or RAG2 genes leading to defective V(D)J recombinase activity can cause either T-B-severe combined immune deficiency or Omenn syndrome. Blood. 97, 2772–2776 (2001)

    Article  CAS  PubMed  Google Scholar 

  61. Ege, M., Ma, Y., Manfras, B., Kalwak, K., Lu, H., Lieber, M.R., et al.: Omenn syndrome due to ARTEMIS mutations. Blood. 105, 4179–4186 (2005)

    Article  CAS  PubMed  Google Scholar 

  62. Giliani, S., Bonfim, C., de Saint, B.G., Lanzi, G., Brousse, N., Koliski, A., et al.: Omenn syndrome in an infant with IL7RA gene mutation. J. Pediatr. 148, 272–274 (2006)

    Article  CAS  PubMed  Google Scholar 

  63. Roifman, C.M., Gu, Y., Cohen, A.: Mutations in the RNA component of RNase mitochondrial RNA processing might cause Omenn syndrome. J. Allergy Clin. Immunol. 117, 897–903 (2006)

    Article  CAS  PubMed  Google Scholar 

  64. Joshi, A.Y., Ham, E.K., Shah, N.B., Dong, X., Khan, S.P., Abraham, R.S.: Atypical Omenn syndrome due to adenosine deaminase deficiency. Case Rep. Immunol. 2012, 919241 (2012)

    Google Scholar 

  65. Allenspach, E., Rawlings, D.J., Scharenberg, A.M.: X-linked severe combined immunodeficiency. In: Pagon, R.A., Adam, M.P., Ardinger, H.H., Wallace, S.E., Amemiya, A., LJH, B., et al. (eds.) GeneReviews(R). University of Washington, Seattle. All rights reserved, Seattle (WA) (1993)

    Google Scholar 

  66. Thiel, C.T.: Cartilage-hair hypoplasia – anauxetic dysplasia spectrum disorders. In: Pagon, R.A., Adam, M.P., Ardinger, H.H., Wallace, S.E., Amemiya, A., LJH, B., et al. (eds.) GeneReviews(R). University of Washington, Seattle. All rights reserved, Seattle (WA) (1993)

    Google Scholar 

  67. Riley Jr., P., Weiner, D.S., Leighley, B., Jonah, D., Morton, D.H., Strauss, K.A., et al.: Cartilage hair hypoplasia: characteristics and orthopaedic manifestations. J. Child. Orthop. 9, 145–152 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  68. Hacihamdioglu, B., Hacihamdioglu, D., Delil, K.: 22q11 deletion syndrome: current perspective. Appl. Clin. Genet. 8, 123–132 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yu, H., Zhang, V.W., Stray-Pedersen, A., Hanson, I.C., Forbes, L.R., de la Morena, M.T., et al.: Rapid molecular diagnostics of severe primary immunodeficiency determined by using targeted next-generation sequencing. J. Allergy Clin. Immunol. 138, 1142–1151 (2016.) e2

    Article  CAS  PubMed  Google Scholar 

  70. Itan, Y., Casanova, J.L.: Novel primary immunodeficiency candidate genes predicted by the human gene connectome. Front. Immunol. 6, 142 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  71. Chinen, J., Notarangelo, L.D., Shearer, W.T.: Advances in basic and clinical immunology in 2014. J. Allergy Clin. Immunol. 135, 1132–1141 (2015)

    Article  CAS  PubMed  Google Scholar 

  72. Bigley, V., Haniffa, M., Doulatov, S., Wang, X.N., Dickinson, R., McGovern, N., et al.: The human syndrome of dendritic cell, monocyte, B and NK lymphoid deficiency. J. Exp. Med. 208, 227–234 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rodrigues, N.P., Janzen, V., Forkert, R., Dombkowski, D.M., Boyd, A.S., Orkin, S.H., et al.: Haploinsufficiency of GATA-2 perturbs adult hematopoietic stem-cell homeostasis. Blood. 106, 477–484 (2005)

    Article  CAS  PubMed  Google Scholar 

  74. Patel, J.P., Puck, J.M., Srinivasan, R., Brown, C., Sunderam, U., Kundu, K., et al.: Nijmegen breakage syndrome detected by newborn screening for T cell receptor excision circles (TRECs). J. Clin. Immunol. 35, 227–233 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Varon, R., Vissinga, C., Platzer, M., Cerosaletti, K.M., Chrzanowska, K.H., Saar, K., et al.: Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell. 93, 467–476 (1998)

    Article  CAS  PubMed  Google Scholar 

  76. Gregorek, H., Chrzanowska, K.H., Dzierzanowska-Fangrat, K., Wakulinska, A., Pietrucha, B., Zapasnik, A., et al.: Nijmegen breakage syndrome: long-term monitoring of viral and immunological biomarkers in peripheral blood before development of malignancy. Clin. Immunol. (Orlando, Fla). 135, 440–447 (2010)

    Article  CAS  Google Scholar 

  77. Puck, J.M.: Neonatal screening for severe combined immunodeficiency. Curr. Opin. Pediatr. 23, 667–673 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Punwani, D., Wang, H., Chan, A.Y., Cowan, M.J., Mallott, J., Sunderam, U., et al.: Combined immunodeficiency due to MALT1 mutations, treated by hematopoietic cell transplantation. J. Clin. Immunol. 35, 135–146 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhang, Y., Yu, X., Ichikawa, M., Lyons, J.J., Datta, S., Lamborn, I.T., et al.: Autosomal recessive phosphoglucomutase 3 (PGM3) mutations link glycosylation defects to atopy, immune deficiency, autoimmunity, and neurocognitive impairment. J. Allergy Clin. Immunol. 133, 1400–9, 1409.e1–5 (2014)

    PubMed  Google Scholar 

  80. Stray-Pedersen, A., Backe, P.H., Sorte, H.S., Morkrid, L., Chokshi, N.Y., Erichsen, H.C., et al.: PGM3 mutations cause a congenital disorder of glycosylation with severe immunodeficiency and skeletal dysplasia. Am. J. Hum. Genet. 95, 96–107 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Willmann, K.L., Klaver, S., Dogu, F., Santos-Valente, E., Garncarz, W., Bilic, I., et al.: Biallelic loss-of-function mutation in NIK causes a primary immunodeficiency with multifaceted aberrant lymphoid immunity. Nat. Commun. 5, 5360 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  82. Martin, E., Palmic, N., Sanquer, S., Lenoir, C., Hauck, F., Mongellaz, C., et al.: CTP synthase 1 deficiency in humans reveals its central role in lymphocyte proliferation. Nature. 510, 288–292 (2014)

    Article  CAS  PubMed  Google Scholar 

  83. Ostrander, D.B., O'Brien, D.J., Gorman, J.A., Carman, G.M.: Effect of CTP synthetase regulation by CTP on phospholipid synthesis in Saccharomyces cerevisiae. J. Biol. Chem. 273, 18992–19001 (1998)

    Article  CAS  PubMed  Google Scholar 

  84. Fairbanks, L.D., Bofill, M., Ruckemann, K., Simmonds, H.A.: Importance of ribonucleotide availability to proliferating T-lymphocytes from healthy humans. Disproportionate expansion of pyrimidine pools and contrasting effects of de novo synthesis inhibitors. J. Biol. Chem. 270, 29682–29689 (1995)

    Article  CAS  PubMed  Google Scholar 

  85. Dobbs, K., Dominguez Conde, C., Zhang, S.Y., Parolini, S., Audry, M., Chou, J., et al.: Inherited DOCK2 deficiency in patients with early-onset invasive infections. N. Engl. J. Med. 372, 2409–2422 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Fukui, Y., Hashimoto, O., Sanui, T., Oono, T., Koga, H., Abe, M., et al.: Haematopoietic cell-specific CDM family protein DOCK2 is essential for lymphocyte migration. Nature. 412, 826–831 (2001)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kejian Zhang MD, MBA .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Wang, L., Alexander Valencia, C., Marsh, R.A., Zhang, K. (2017). Next-Generation Sequencing Based Clinical Molecular Diagnosis of Primary Immunodeficiency Diseases. In: Wong, LJ. (eds) Next Generation Sequencing Based Clinical Molecular Diagnosis of Human Genetic Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-56418-0_6

Download citation

Publish with us

Policies and ethics