Skip to main content

Model-Based Engineering and Spatiotemporal Analysis of Transport Systems

  • Conference paper
  • First Online:
Evaluation of Novel Approaches to Software Engineering (ENASE 2016)

Abstract

To guarantee that modern transport systems carry their passengers in a safe and reliable way, their control software has to fulfill extreme safety and robustness demands. To achieve that, we propose the model-based engineering of the controllers using the tool-set Reactive Blocks. This leads to models in a precise formal semantics that can be formally analyzed. Thus, we can verify that a transport system prevents collisions and fulfills other spatiotemporal properties. In particular, we combine test runs of already existing devices to find out their physical constraints with the analysis of simulation runs using the verification tool BeSpaceD. So, we can discover potential safety hazards already during the development of the control software. A centerpiece of our work is a methodology for the engineering and safety analysis of transportation systems. We elaborate its practical usability by means of two control systems for a demonstrator based on Lego Mindstorms. This paper is an extension of [20].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is important to note that, the bigger the safety buffer b is, the more states of sleepers need to be checked, which means more processing time and again a bigger latency with regards to when the train receives a response. By testing the braking distances of the trains with various safety buffer values, we found out that \(b=10\) gives the best results.

  2. 2.

    The track layout contains many turns such that the two highest speed levels would often lead to derailments. Therefore, we did not consider them further.

  3. 3.

    The term parameter node refers to pins at the edge of a UML activity.

  4. 4.

    The inaccuracy of using sleepers for measurement was compensated by overapproximating the length of the trains, i.e., we declared a crash even when only one sleeper lay between those occupied by two trains.

References

  1. AMQP.org: Advanced message queuing protocol (AMQP) (2016). www.amqp.org/. Accessed 01 Feb 2016

  2. Blech, J.O., Peake, I., Schmidt, H., Kande, M., Ramaswamy, S., Sudarsan, S.D., Narayanan, V.: Collaborative engineering through integration of architectural, social and spatial models. In: Proceedings of Emerging Technologies and Factory Automation (ETFA). IEEE Computer (2014)

    Google Scholar 

  3. Blech, J.O., Schmidt, H.: Towards modeling and checking the spatial and interaction behavior of widely distributed systems. In: Improving Systems and Software Engineering Conference (2013)

    Google Scholar 

  4. Blech, J.O., Schmidt, H.: BeSpaceD: towards a tool framework and methodology for the specification and verification of spatial behavior of distributed software component systems. Technical report. arXiv:1404.3537 (2014)

  5. Caires, L., Vieira, H.T.: SLMC: a tool for model checking concurrent systems against dynamical spatial logic specifications. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 485–491. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28756-5_35

    Chapter  Google Scholar 

  6. CHESS-Consortium: Chess modeling language and editor v1. 0.2 (2010)

    Google Scholar 

  7. Cimatti, A., Giunchiglia, F., Mongardi, G., Romano, D., Torielli, F., Traverso, P.: Model checking safety critical software with SPIN: an application to a railway interlocking system. In: Ehrenberger, W. (ed.) SAFECOMP 1998. LNCS, vol. 1516, pp. 284–293. Springer, Heidelberg (1998). doi:10.1007/3-540-49646-7_22

    Chapter  Google Scholar 

  8. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: HyComp: an SMT-based model checker for hybrid systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 52–67. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46681-0_4

    Google Scholar 

  9. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  10. ERTMS Project: ERTMS in brief. http://www.ertms.net/?page_id=40. Accessed 14 Aug 2015

  11. Frehse, G.: PHAVer: algorithmic verification of hybrid systems past HyTech. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31954-2_17

    Chapter  Google Scholar 

  12. Gray, J.N.: Notes on data base operating systems. In: Bayer, R., Graham, R.M., Seegmüller, G. (eds.) Operating Systems. LNCS, vol. 60, pp. 393–481. Springer, Heidelberg (1978). doi:10.1007/3-540-08755-9_9

    Chapter  Google Scholar 

  13. Han, F., Blech, J.O., Herrmann, P., Schmidt, H.: Towards verifying safety properties of real-time probability systems. In: 11th International Workshop on Formal Engineering approaches to Software Components and Architectures (FESCA). EPTCS (2014)

    Google Scholar 

  14. Han, F., Blech, J.O., Herrmann, P., Schmidt, H.: Model-based engineering and analysis of space-aware systems communicating via IEEE 802.11. In: 39th Annual International Computers, Software & Applications Conference (COMPSAC), pp. 638–646. IEEE Computer (2015)

    Google Scholar 

  15. Han, F., Herrmann, P., Le, H.: Modeling and verifying real-time properties of reactive systems. In: 18th International Conference on Engineering of Complex Computer Systems (ICECCS), pp. 14–23. IEEE Computer (2013)

    Google Scholar 

  16. Herrmann, P., Blech, J.O.: Formal model-based development in industrial automation with reactive blocks. In: 3rd Workshop on Human-Oriented Formal Methods (2016, to appear)

    Google Scholar 

  17. Herrmann, P., Blech, J.O., Han, F., Schmidt, H.: A model-based tool chain to verify spatial behavior of cyber-physical systems. Int. J. Web Serv. Res. (IJWSR) 13(1), 40–52 (2016)

    Article  Google Scholar 

  18. Herrmann, P., Svae, A., Svendsen, H.H., Blech, J.O.: Collaborative model-based development of a remote train monitoring system. In: Proceedings of Evaluation of Novel Approaches to Software Engineering, COLAFORM Track (2016)

    Google Scholar 

  19. Hordvik, S.E., Øseth, K.: Control software for an autonomous cyber-physical train system. Master’s thesis, Norwegian University of Science and Technology (NTNU) (2015)

    Google Scholar 

  20. Hordvik, S., Øseth, K., Blech, J.O., Herrmann, P.: A methodology for model-based development and safety analysis of transport systems. In: 11th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE) (2016)

    Google Scholar 

  21. Kraemer, F.A., Herrmann, P.: Automated encapsulation of UML activities for incremental development and verification. In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 571–585. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04425-0_44

    Chapter  Google Scholar 

  22. Kraemer, F.A., Herrmann, P.: Reactive semantics for distributed UML activities. In: Hatcliff, J., Zucca, E. (eds.) FMOODS/FORTE -2010. LNCS, vol. 6117, pp. 17–31. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13464-7_3

    Chapter  Google Scholar 

  23. Kraemer, F.A., Herrmann, P., Bræk, R.: Aligning UML 2.0 state machines and temporal logic for the efficient execution of services. In: Meersman, R., Tari, Z. (eds.) OTM 2006. LNCS, vol. 4276, pp. 1613–1632. Springer, Heidelberg (2006). doi:10.1007/11914952_41

    Chapter  Google Scholar 

  24. Kraemer, F.A., Slåtten, V., Herrmann, P.: Tool support for the rapid composition, analysis and implementation of reactive services. J. Syst. Softw. 82(12), 2068–2080 (2009)

    Article  Google Scholar 

  25. Lee, E.: Cyber physical systems: design challenges. In: 11th IEEE International Symposium on Object Oriented Real-Time Distributed Computing (ISORC), pp. 363–369. IEEE Computer (2008)

    Google Scholar 

  26. McKenna, A., Nanty, A.: BlueBrick – Version 1.8.0. (2015). www.bluebrick.lswproject.com/help_en.html. Accessed 02 Feb 2016

  27. MQTT.org: Message queuing telemetry transport (MQTT). www.mqtt.org/. Accessed 14 Aug 2015

  28. Overskeid, K.M.: Personal rapid transit (PRT) system using lego mindstorms. Master’s thesis, Norwegian University of Science and Technology (NTNU) (2015)

    Google Scholar 

  29. Platzer, A., Quesel, J.-D.: KeYmaera: a hybrid theorem prover for hybrid systems (system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 171–178. Springer, Heidelberg (2008). doi:10.1007/978-3-540-71070-7_15

    Chapter  Google Scholar 

  30. Platzer, A., Quesel, J.-D.: European train control system: a case study in formal verification. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol. 5885, pp. 246–265. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10373-5_13

    Chapter  Google Scholar 

  31. Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In: Comptes rendues du ler Congres des Math. des Pays Slaves, Warsaw, pp. 192–201 (1929). 395

    Google Scholar 

  32. Slåtten, V., Kraemer, F., Herrmann, P.: Towards automatic generation of formal specifications to validate and verify reliable distributed system: a method exemplified by an industrial case study. In: 10th International Conference on Generative Programming and Component Engineering (GPCE 2011), pp. 147–156. ACM (2011)

    Google Scholar 

  33. Svae, A.: Remote monitoring of lego-mindstorm trains. Project thesis, Norwegian University of Science and Technology, Trondheim (2016)

    Google Scholar 

  34. Svendsen, H.H.: Model-based engineering of a distributed, autonomous control system for interacting trains, deployed on a lego mindstorms platform. Project thesis, Norwegian University of Science and Technology, Trondheim (2016)

    Google Scholar 

  35. Svendsen, H.H.: Self-localization of lego trains in a modular framework. Master’s thesis, Norwegian University of Science and Technology, Trondheim (2016)

    Google Scholar 

  36. Tiwari, A.: Time-aware abstractions in HybridSal. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 504–510. Springer, Cham (2015). doi:10.1007/978-3-319-21690-4_34

    Chapter  Google Scholar 

  37. UNIFE Project: UNIFE. http://www.unife.org/. Accessed 14 Aug 2015

  38. Upton, E., Halfacree, G.: Raspberry Pi User Guide. Wiley, Hoboken (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Herrmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Hordvik, S., Øseth, K., Svendsen, H.H., Blech, J.O., Herrmann, P. (2016). Model-Based Engineering and Spatiotemporal Analysis of Transport Systems. In: Maciaszek, L., Filipe, J. (eds) Evaluation of Novel Approaches to Software Engineering. ENASE 2016. Communications in Computer and Information Science, vol 703. Springer, Cham. https://doi.org/10.1007/978-3-319-56390-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56390-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56389-3

  • Online ISBN: 978-3-319-56390-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics