Advertisement

Polarization Entangled Photons from Semiconductor Quantum Dots

  • Fei Ding
  • Oliver G. Schmidt
Chapter
Part of the Nano-Optics and Nanophotonics book series (NON)

Abstract

Semiconductor quantum dots are among the most promising candidates for the deterministic generation of polarization entangled photon pairs. In this chapter we review the most recent progress on this topic. First, we recall the basic concepts of polarization entangled photon qubits, the biexciton cascade process and exciton fine structure splitting in single quantum dots. The experimental techniques for controlling the fine structure splitting, which are critical for the generation of photon pairs with a high fidelity to the symmetric Bell state, are briefly discussed. A main focus is given to the recently developed anisotropic strain engineering technique, which has been used to fabricate an entangled light-emitting-diode with high yield and fast triggering speed, and an entangled photon source with wavelength tunability. Experimental progress on improving the collection efficiency of the entangled photon sources are also mentioned. We envision that, with the remarkable achievements in the field, the entanglement distribution, the hybrid interfacing with atoms, the telecom band emissions, and the on-chip integration will be realized soon with quantum dot based polarization entangled photon sources.

Keywords

Quantum Information Processing Photon Pair Entangle Photon Piezoelectric Lead Zirconic Titanate Vertical Electric Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was financially supported by the ERC Starting Grant No. 715770 (QD-NOMS), the BMBF Q.Com-H (16KIS0106) and the European Union Seventh Framework Programme 209 (FP7/2007–2013) under Grant Agreement No. 601126 210 (HANAS).

References

  1. 1.
    J.W. Pan et al., Rev. Mod. Phys. 84, 777 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777 (1935)ADSCrossRefGoogle Scholar
  3. 3.
    R. Feynman, Int. J. Theor. Phys. 21, 467 (1982)CrossRefGoogle Scholar
  4. 4.
    D. Deutsch, Proceedings of the Royal Society of London A: Mathematical. Phys. Eng. Sci. 400, 97 (1985)CrossRefGoogle Scholar
  5. 5.
    C.H. Bennett et al., Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    C.H. Bennett, S.J. Wiesner, Phys. Rev. Lett. 69, 2881 (1992)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    A.K. Ekert, Phys. Rev. Lett. 67, 661 (1991)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    R. Raussendorf, D.E. Browne, H.J. Briegel, Phys. Rev. A 68, 022312 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    J.P. Dowling, K.P. Seshadreesan, Journal of Lightwave Technology 33, 2359 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    N. Roch et al., Phys. Rev. Lett. 112, 170501 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    R. Blatt, D. Wineland, Nature 453, 1008 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    R. McConnell et al., Nature 519, 439 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    K. Lee et al., Science 334, 1253 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    M. Koashi, T. Yamamoto, N. Imoto, Phys. Rev. A 63, 030301 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    O. Benson, C. Santori, M. Pelton, Y. Yamamoto, Phys. Rev. Lett. 84, 2513 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    A. Rastelli, S. Kiravittaya, O.G. Schmidt, Single Semiconductor Quantum Dots (Springer, Berlin, 2009), pp. 31–69Google Scholar
  17. 17.
    A.J. Shields, R.M. Stevenson, R.J. Young, Single Semiconductor Quantum Dots (Springer, Berlin, 2009)Google Scholar
  18. 18.
    Y. Chen et al., Nat. Commun. 7, 10387 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    R.M. Stevenson et al., Nature 439, 179 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    N. Akopian et al., Phys. Rev. Lett. 96, 130501 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    R. Hafenbrak et al., New J. Phys. 9, 315 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    G. Juska et al., Nat. Photon. 7, 527 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    M. Ghali, K. Ohtani, Y. Ohno, H. Ohno, Nat. Commun. 3, 661 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    T. Kuroda et al., Phys. Rev. B 88, 041306 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    A. Dousse et al., Nature 466, 217 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    A. Muller, W. Fang, J. Lawall, G.S. Solomon, Phys. Rev. Lett. 103, 217402 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    R. Trotta et al., Nano Lett. 14, 3439 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    M. Muller et al., Nat. Photon. 8, 224 (2014)Google Scholar
  29. 29.
    C.L. Salter et al., Nature 465, 594 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    J. Zhang et al., Nat. Commun. 6, 10067 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    C.-Y. Lu, J.-W. Pan, Nat. Photon. 8, 174 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    G.N. Lewis, Nature 118, 874 (1926)ADSCrossRefGoogle Scholar
  33. 33.
    L. Allen, M.W. Beijersbergen, R. Spreeuw, J. Woerdman, Phys. Rev. A 45, 8185 (1992)ADSCrossRefGoogle Scholar
  34. 34.
    E. Nagali et al., Phys. Rev. Lett. 103, 013601 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    X.L. Wang et al., Nature 518, 516 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    J. Brendel, N. Gisin, W. Tittel, H. Zbinden, Phys. Rev. Lett. 82, 2594 (1999)ADSCrossRefGoogle Scholar
  37. 37.
    E. Schrödinger, in Mathematical Proceedings of the Cambridge Philosophical Society, vol. 04 (Cambridge University Press, Cambridge, 1935), pp. 555–563Google Scholar
  38. 38.
    A. Peres, Phys. Rev. Lett. 77, 1413 (1996)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    M. Horodecki, P. Horodecki, R. Horodecki, Phys. Lett. A 223, 1 (1996)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    J.S. Bell, On the Einstein Podolsky Rosen Paradox (1964)Google Scholar
  41. 41.
    J.F. Clauser, M.A. Horne, A. Shimony, R.A. Holt, Phys. Rev. Lett. 23, 880 (1969)ADSCrossRefGoogle Scholar
  42. 42.
    P.G. Kwiat et al., Phys. Rev. A 60, R773 (1999)ADSCrossRefGoogle Scholar
  43. 43.
    P.G. Kwiat et al., Phys. Rev. Lett. 75, 4337 (1995)ADSCrossRefGoogle Scholar
  44. 44.
    A. Mair, A. Vaziri, G. Weihs, A. Zeilinger, Nature 412, 313 (2001)ADSCrossRefGoogle Scholar
  45. 45.
    C. Law, I. Walmsley, J. Eberly, Phys. Rev. Lett. 84, 5304 (2000)ADSCrossRefGoogle Scholar
  46. 46.
    E. Megidish et al., Phys. Rev. Lett. 110, 210403 (2013)ADSCrossRefGoogle Scholar
  47. 47.
    X.S. Ma et al., Opt. Express 20, 23126 (2012)ADSCrossRefGoogle Scholar
  48. 48.
    S.J. Freedman, J.F. Clauser, Phys. Rev. Lett. 28, 938 (1972)ADSCrossRefGoogle Scholar
  49. 49.
    A. Aspect, P. Grangier, G. Roger, Phys. Rev. Lett. 47, 460 (1981)ADSCrossRefGoogle Scholar
  50. 50.
    D.C. Burnham, D.L. Weinberg, Phys. Rev. Lett. 25, 84 (1970)ADSCrossRefGoogle Scholar
  51. 51.
    Y. Shih, C.O. Alley, Phys. Rev. Lett. 61, 2921 (1988)ADSCrossRefGoogle Scholar
  52. 52.
    P. Michler et al., Science 290, 2282 (2000)ADSCrossRefGoogle Scholar
  53. 53.
    R. Singh, G. Bester, Phys. Rev. Lett. 104, 196803 (2010)ADSCrossRefGoogle Scholar
  54. 54.
    M. Bayer et al., Phys. Rev. B 65, 195315 (2002)ADSCrossRefGoogle Scholar
  55. 55.
    R.M. Stevenson et al., Phys. Rev. Lett. 101, 170501 (2008)ADSCrossRefGoogle Scholar
  56. 56.
    M. Ward et al., Nat. Commun. 5, 4316 (2014)CrossRefGoogle Scholar
  57. 57.
    W. Langbein et al., Phys. Rev. B 69, 161301 (2004)ADSCrossRefGoogle Scholar
  58. 58.
    A. Tartakovskii et al., Phys. Rev. B 70, 193303 (2004)ADSCrossRefGoogle Scholar
  59. 59.
    D.J.P. Ellis et al., Appl. Phys. Lett. 90, 011907 (2007)ADSCrossRefGoogle Scholar
  60. 60.
    R. Seguin et al., Appl. Phys. Lett. 89, 263109 (2006)Google Scholar
  61. 61.
    P. Mrowiński et al., Appl. Phys. Lett. 106, 053114 (2015)ADSCrossRefGoogle Scholar
  62. 62.
    A.J. Bennett et al., Nat. Phys. 6, 947 (2010)CrossRefGoogle Scholar
  63. 63.
    J. Mar et al., Phys. Rev. B 93, 045316 (2016)ADSCrossRefGoogle Scholar
  64. 64.
    B.D. Gerardot et al., Appl. Phys. Lett. 90, 041101 (2007)Google Scholar
  65. 65.
    M. Vogel et al., Appl. Phys. Lett. 91, 051904 (2007)ADSCrossRefGoogle Scholar
  66. 66.
    S. Seidl et al., Appl. Phys. Lett. 88, 203113 (2006)ADSCrossRefGoogle Scholar
  67. 67.
    J.D. Plumhof, R. Trotta, A. Rastelli, O.G. Schmidt, Nanoscale Res. Lett. 7, 336 (2012)ADSCrossRefGoogle Scholar
  68. 68.
    R. Trotta et al., Phys. Rev. Lett. 109, 147401 (2012)ADSCrossRefGoogle Scholar
  69. 69.
    M.A. Versteegh et al., Nat. Commun. 5, 6298 (2014)CrossRefGoogle Scholar
  70. 70.
    R. Singh, G. Bester, Phys. Rev. Lett. 103, 063601 (2009)ADSCrossRefGoogle Scholar
  71. 71.
    A. Schliwa et al., Phys. Rev. B 80, 161307 (2009)ADSCrossRefGoogle Scholar
  72. 72.
    V. Troncale et al., J. Appl. Phys. 101, 081703 (2007)ADSCrossRefGoogle Scholar
  73. 73.
    D. Oberli et al., Phys. Rev. B 80, 165312 (2009)ADSCrossRefGoogle Scholar
  74. 74.
    Y. Sugiyama, Y. Sakuma, S. Muto, N. Yokoyama, Appl. Phys. Lett. 67, 256 (1995)ADSCrossRefGoogle Scholar
  75. 75.
    A. Mohan et al., Nat. Photon. 4, 302 (2010)CrossRefGoogle Scholar
  76. 76.
    J. Treu et al., Appl. Phys. Lett. 101, 022102 (2012)ADSCrossRefGoogle Scholar
  77. 77.
    X. Liu et al., Phys. Rev. B 90, 081301 (2014)ADSCrossRefGoogle Scholar
  78. 78.
    Y.H. Huo, A. Rastelli, O.G. Schmidt, Appl. Phys. Lett. 102, 152105 (2013)Google Scholar
  79. 79.
    A. Rastelli et al., Phys. Rev. Lett. 92, 166104 (2004)ADSCrossRefGoogle Scholar
  80. 80.
    P. Atkinson, O.G. Schmidt, S.P. Bremner, D.A. Ritchie, Comptes Rendus Physique 9, 788 (2008)ADSCrossRefGoogle Scholar
  81. 81.
    J.-P. Jahn et al., Phys. Rev. B 92, 245439 (2015)ADSCrossRefGoogle Scholar
  82. 82.
    M. Gong, W. Zhang, G.-C. Guo, L. He, Phys. Rev. Lett. 106, 227401 (2011)ADSCrossRefGoogle Scholar
  83. 83.
    G.W. Bryant et al., Phys. Rev. Lett. 105, 067404 (2010)ADSCrossRefGoogle Scholar
  84. 84.
    F. Ding et al., Phys. Rev. Lett. 104, 067405 (2010)ADSCrossRefGoogle Scholar
  85. 85.
    K.D. Jons et al., Phys. Rev. Lett. 107, 217402 (2011)ADSCrossRefGoogle Scholar
  86. 86.
    J.D. Plumhof et al., Phys. Rev. B 83, 121302 (2011)ADSCrossRefGoogle Scholar
  87. 87.
    Y.H. Huo et al., Nat. Phys. 10, 46 (2014)CrossRefGoogle Scholar
  88. 88.
    A. Rastelli et al., Physica status solidi (b) 249, 687 (2012)Google Scholar
  89. 89.
    R. Trotta et al., Adv. Mater. 24, 2668 (2012)CrossRefGoogle Scholar
  90. 90.
    R. Trotta, A. Rastelli, Engineering the Atom-Photon Interaction (Springer, Berlin, 2015)Google Scholar
  91. 91.
    J. Wang, M. Gong, G.-C. Guo, L. He, Appl. Phys. Lett. 101, 063114 (2012)ADSCrossRefGoogle Scholar
  92. 92.
    R. Trotta et al., Nat. Commun. 7, 10375 (2016)ADSCrossRefGoogle Scholar
  93. 93.
    A. Orieux et al., Phys. Rev. Lett. 110, 160502 (2013)ADSCrossRefGoogle Scholar
  94. 94.
    C. Varnava et al., npj Quantum Information 2, 16006 (2016)Google Scholar
  95. 95.
    J. Nilsson et al., Nat. Photon. 7, 311 (2013)ADSCrossRefGoogle Scholar
  96. 96.
    D.F. James, P.G. Kwiat, W.J. Munro, A.G. White, Phys. Rev. A 64, 052312 (2001)ADSCrossRefGoogle Scholar
  97. 97.
    J.W. Pan, D. Bouwmeester, H. Weinfurter, A. Zeilinger, Phys. Rev. Lett. 80, 3891 (1998)ADSMathSciNetCrossRefGoogle Scholar
  98. 98.
    N. Akopian et al., Nat. Photon. 5, 230 (2011)ADSCrossRefGoogle Scholar
  99. 99.
    M.A. Pooley et al., Phys. Rev. Appl. 1, 024002 (2014)ADSCrossRefGoogle Scholar
  100. 100.
    J. Wang, M. Gong, G.C. Guo, L. He, Phys. Rev. Lett. 115, 067401 (2015)ADSCrossRefGoogle Scholar
  101. 101.
    R. Trotta et al., Phys. Rev. Lett. 114, 150502 (2015)ADSCrossRefGoogle Scholar
  102. 102.
    S. Baek et al., Science 334, 958 (2011)ADSCrossRefGoogle Scholar
  103. 103.
    J. Zhang et al., Nao Lett. 17, 501 (2017)Google Scholar
  104. 104.
    K. Hennessy et al., Nature 445, 896 (2007)ADSCrossRefGoogle Scholar
  105. 105.
    L. Sapienza, M. Davanco, A. Badolato, K. Srinivasan, Nat. Commun. 6, 7833 (2015)ADSCrossRefGoogle Scholar
  106. 106.
    A. Dousse et al., Phys. Rev. Lett. 101, 267404 (2008)ADSCrossRefGoogle Scholar
  107. 107.
    M. Gschrey et al., Nat. Commun. 6, 7662 (2015)CrossRefGoogle Scholar
  108. 108.
    T. Huber et al., Nano Lett. 14, 7107 (2014)ADSCrossRefGoogle Scholar
  109. 109.
    P. Kremer et al., Phys. Rev. B 90, 201408 (2014)ADSMathSciNetCrossRefGoogle Scholar
  110. 110.
    S. Barz, G. Cronenberg, A. Zeilinger, P. Walther, Nat. Photon. 4, 553 (2010)ADSCrossRefGoogle Scholar
  111. 111.
    W.B. Gao et al., Nature 491, 426 (2012)ADSCrossRefGoogle Scholar
  112. 112.
    A. Delteil et al., Nat. Phys. 12, 218 (2015)CrossRefGoogle Scholar
  113. 113.
    K. De Greve et al., Nature 491, 421 (2012)ADSCrossRefGoogle Scholar
  114. 114.
    J.R. Schaibley et al., Phys. Rev. Lett. 110, 167401 (2013)ADSCrossRefGoogle Scholar
  115. 115.
    M. Zukowski, A. Zeilinger, M.A. Horne, A.K. Ekert, Phys. Rev. Lett. 71, 4287 (1993)ADSCrossRefGoogle Scholar
  116. 116.
    H.J. Briegel, W. Dr, J.I. Cirac, P. Zoller, Phys. Rev. Lett. 81, 5932 (1998)ADSCrossRefGoogle Scholar
  117. 117.
    N. Gisin, R. Thew, Nat. Photon. 1, 165 (2007)ADSCrossRefGoogle Scholar
  118. 118.
    H. de Riedmatten, M. Afzelius, Engineering the Atom-Photon Interaction (Springer, Berlin, 2015)Google Scholar
  119. 119.
    S. Ulrich et al., Phys. Rev. B 90, 125310 (2014)ADSCrossRefGoogle Scholar
  120. 120.
    H. Meyer et al., Phys. Rev. Lett. 114, 123001 (2015)ADSCrossRefGoogle Scholar
  121. 121.
    J.-S. Tang et al., Nat. Commun. 6, 8652 (2015)CrossRefGoogle Scholar
  122. 122.
    N. Sinclair et al., Phys. Rev. Lett. 113, 053603 (2014)ADSCrossRefGoogle Scholar
  123. 123.
    S. Guha et al., Phys. Rev. A 92, 022357 (2015)ADSCrossRefGoogle Scholar
  124. 124.
    R. Al-Khuzheyri et al., Appl. Phys. Lett. 109, 163104 (2016)Google Scholar
  125. 125.
    G. Chen et al. Sci. Rep. 6 (2016)Google Scholar
  126. 126.
    C. Clausen et al., New J. Phys. 16, 093058 (2014)ADSCrossRefGoogle Scholar
  127. 127.
    N. Prtljaga et al., Appl. Phys. Lett. 108, 251101 (2016)ADSCrossRefGoogle Scholar
  128. 128.
    Y. Zhang et al., Nano Lett. 16, 5785 (2016)ADSCrossRefGoogle Scholar
  129. 129.
    M.H. Devoret, R.J. Schoelkopf, Science 339, 1169 (2013)ADSCrossRefGoogle Scholar
  130. 130.
    F. Najafi et al., Nat. Commun. 6, 6873 (2015)CrossRefGoogle Scholar
  131. 131.
    N.C. Harris et al., Phys. Rev. X 4, 041047 (2014)Google Scholar
  132. 132.
    G. Reithmaier et al., Nano Lett. 15, 5208 (2015)ADSCrossRefGoogle Scholar
  133. 133.
    N. Somaschi et al., Nat. Photon. 10, 340 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute for Integrative Nanosciences, IFW DresdenDresdenGermany
  2. 2.Institute for Solid State Physics, Leibniz University of HannoverHannoverGermany

Personalised recommendations