Skip to main content

Resonantly Excited Quantum Dots: Superior Non-classical Light Sources for Quantum Information

  • Chapter
  • First Online:
Quantum Dots for Quantum Information Technologies

Part of the book series: Nano-Optics and Nanophotonics ((NON))

  • 3400 Accesses

Abstract

In this contribution, we briefly recall the fundamental optical and quantum optical properties of single photons and photon pairs, like coherence, purity, indistinguishability and entanglement, which are necessary to understand their huge potential for quantum information applications. We put special emphasis on resonant excitation schemes of excitons and biexcitons in semiconductor quantum dots since these provide photon wave packets with superior properties. This includes continuous-wave and pulsed excitation, rapid adiabatic passage, spin-flip Raman transitions, two-photon excitation and phonon-assisted excitation methods for excitons and biexcitons. We then review the recent progress on the generation of single and entangled photon states under these different resonant excitation schemes and discuss the pro and cons of the different methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Michler, A. Kiraz, C. Becher, W.V. Schoenfeld, P.M. Petroff, L. Zhang, E. Hu, A. Imamoğlu, A quantum dot single-photon turnstile device. Science 290, 2282 (2000)

    Article  ADS  Google Scholar 

  2. Z. Yuan, B.E. Kardynal, R.M. Stevenson, A.J. Shields, C.J. Lobo, K. Cooper, N.S. Beattie, D.A. Ritchie, M. Pepper, Electrically driven single-photon source. Science 295, 102 (2002)

    Article  ADS  Google Scholar 

  3. N. Akopian, N.H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B.D. Gerardot, P.M. Petroff, Entangled photon pairs from semiconductor quantum dots. Phys. Rev. Lett. 96, 130501 (2006)

    Article  ADS  Google Scholar 

  4. R.M. Stevenson, R.J. Young, P. Atkinson, K. Cooper, D.A. Ritchie, A.J. Shields, A semiconductor source of triggered entangled photon pairs. Nature 439, 179 (2006)

    Article  ADS  Google Scholar 

  5. R. Hafenbrak, S.M. Ulrich, P. Michler, L. Wang, A. Rastelli, O.G. Schmidt, Triggered polarization-entangled photon pairs from a single quantum dot up to 30 K. New J. Phys. 9, 315 (2007)

    Article  ADS  Google Scholar 

  6. M. Varnava, D.E. Browne, T. Rudolph, How good must single photon sources and detectors be for efficient linear optical quantum computation? Phys. Rev. Lett. 100, 060502 (2008)

    Article  ADS  Google Scholar 

  7. I. Aharonovich, D. Englund, M. Toth, Solid-state single-photon emitters. Nat. Photonics 10, 631 (2016)

    Article  ADS  Google Scholar 

  8. A. Muller, E.B. Flagg, P. Bianucci, X.Y. Wang, D.G. Deppe, W. Ma, J. Zhang, G.J. Salamo, M. Xiao, C.K. Shih, Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity. Phys. Rev. Lett. 99, 187402 (2007)

    Google Scholar 

  9. A.N. Vamivakas, Y. Zhao, C.-Y. Lu, M. Atatüre, Spin-resolved quantum-dot resonance fluorescence. Nat. Phys. 5, 198 (2009)

    Article  Google Scholar 

  10. P. Michler, Single Semiconductor Quantum Dots (Springer, Berlin, 2009)

    Book  Google Scholar 

  11. C.K. Hong, Z.Y. Ou, L. Mandel, Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044 (1987)

    Article  ADS  Google Scholar 

  12. H.S. Nguyen, G. Sallen, C. Voisin, P. Roussignol, C. Diederichs, G. Cassabois, Optically gated resonant emission of single quantum dots. Phys. Rev. Lett. 108, 057401 (2012)

    Article  ADS  Google Scholar 

  13. A.V. Kuhlmann, J.H. Prechtel, J. Houel, A. Ludwig, D. Reuter, A.D. Wieck, R.J. Warburton, Transform-limited single photons from a single quantum dot. Nat. Commun. 6, 8204 (2015)

    Article  ADS  Google Scholar 

  14. K.A. Fischer, K. Müller, K.G. Lagoudakis, J. Vuc̆ković, Dynamical modeling of pulsed two-photon interference. New J. Phys. 18, 113053 (2016)

    Google Scholar 

  15. H. Benisty, H. De Neve, C. Weisbuch, Impact of planar microcavity effects on light extraction-Part I: basic concepts and analytical trends. IEEE J. Quantum Electron. 34, 1612 (1998)

    Article  ADS  Google Scholar 

  16. N. Gregersen, P. Kaer, J. Mørk, Modeling and design of high-efficiency single-photon sources. IEEE J. Sel. Top. Quantum Electron. 19, 9000516 (2013)

    Article  Google Scholar 

  17. J. Finley, P. Fry, A. Ashmore, A. Lemaître, A. Tartakovskii, R. Oulton, D. Mowbray, M. Skolnick, M. Hopkinson, P.D. Buckle, P. Maksym, Observation of multicharged excitons and biexcitons in a single InGaAs quantum dot. Phys. Rev. B 63, 161305 (2001)

    Article  ADS  Google Scholar 

  18. M. Metcalfe, S.M. Carr, A. Muller, G.S. Solomon, J. Lawall, Resolved sideband emission of InAs/GaAs quantum dots strained by surface acoustic waves. Phys. Rev. Lett. 105, 037401 (2010)

    Article  ADS  Google Scholar 

  19. S.L. Portalupi, G. Hornecker, V. Giesz, T. Grange, A. Lemaître, J. Demory, I. Sagnes, N.D. Lanzillotti-Kimura, L. Lanco, A. Auffèves, P. Senellart, Bright phonon-tuned single-photon source. Nano Lett. 15, 6290 (2015)

    Article  ADS  Google Scholar 

  20. O. Gazzano, S. Michaelis de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, P. Senellart, Bright solid-state sources of indistinguishable single photons. Nat. Commun. 4, 1425 (2013)

    Article  Google Scholar 

  21. J. Claudon, J. Bleuse, N.S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, J.-M. Gérard, A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nat. Photonics 4, 174 (2010)

    ADS  Google Scholar 

  22. M. Munsch, N.S. Malik, E. Dupuy, A. Delga, J. Bleuse, J.-M. Gérard, J. Claudon, N. Gregersen, J. Mørk, Dielectric GaAs antenna ensuring an efficient broadband coupling between an InAs quantum dot and a gaussian optical beam. Phys. Rev. Lett. 110, 177402 (2013)

    Article  ADS  Google Scholar 

  23. M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, S. Reitzenstein, Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography. Nature Commun. 6, 7662 (2015)

    Article  ADS  Google Scholar 

  24. A. Schwagmann, S. Kalliakos, I. Farrer, J.P. Griffiths, G.A.C. Jones, D.A. Ritchie, A.J. Shields, On-chip single photon emission from an integrated semiconductor quantum dot into a photonic crystal waveguide. Appl. Phys. Lett. 99, 261108 (2011)

    Article  ADS  Google Scholar 

  25. A. Laucht, S. Pütz, T. Günthner, N. Hauke, R. Saive, S. Frédérick, M. Bichler, M.-C. Amann, A.W. Holleitner, M. Kaniber, J.J. Finley, Awaveguide-coupled on-chip single-photon source. Phys. Rev. X 2, 011014 (2012)

    Google Scholar 

  26. M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E.H. Lee, J.D. Song, S. Stobbe, P. Lodahl, Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Phys. Rev. Lett. 113, 093603 (2014)

    Google Scholar 

  27. A. Einstein, B. Podolsky, N. Rosen, Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  28. G. Vidal, R.F. Werner, Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  29. S. Hill, W.K. Wootters, Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  30. V. Coffman, J. Kundu, W.K. Wootters, Distributed entanglement. Phys. Rev. A 61, 052306 (2000)

    Article  ADS  Google Scholar 

  31. D.F.V. James, P.G. Kwiat, W.J. Munro, A.G. White, Measurement of qubits. Phys. Rev. A 64, 052312 (2001)

    Article  ADS  Google Scholar 

  32. C.H. Bennett, H.J. Bernstein, S. Popescu, B. Schumacher, Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)

    Article  ADS  Google Scholar 

  33. A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, P. Senellart, Ultrabright source of entangled photon pairs. Nature 466, 217 (2010)

    Article  ADS  Google Scholar 

  34. K.D. Jöns, R. Hafenbrak, P. Atkinson, A. Rastelli, O.G. Schmidt, P. Michler, Quantum state tomography measurements on strain-tuned InxGa1-xAs/GaAs quantum dots. Phys. Status Solidi B 249, 697 (2012)

    Article  ADS  Google Scholar 

  35. Y. Chen, J. Zhang, M. Zopf, K. Jung, Y. Zhang, R. Keil, F. Ding, O.G. Schmidt, Wavelength-tunable entangled photons from silicon-integrated III-V quantum dots. Nat. Commun. 7, 10387 (2016)

    Article  ADS  Google Scholar 

  36. R. Trotta, J. Martn-Snchez, J.S. Wildmann, G. Piredda, M. Reindl, C. Schimpf, E. Zallo, S. Stroj, J. Edlinger, A. Rastelli, Wavelength-tunable sources of entangled photons interfaced with atomic vapours. Nat. Commun. 7, 10375 (2016)

    Article  ADS  Google Scholar 

  37. I.N. Stranski, L. Krastanow, Sitz. Ber. Akad. Wiss., Math.-naturwiss. Kl. Abt. IIb 146, 797 (1938)

    Google Scholar 

  38. B. Patton, W. Langbein, U. Woggon, Trion, biexciton, and exciton dynamics in single self-assembled CdSe quantum dots. Phys. Rev. B 68, 125316 (2003)

    Article  ADS  Google Scholar 

  39. A.J. Bennett, D.C. Unitt, A.J. Shields, P. Atkinson, D.A. Ritchie, Influence of exciton dynamics on the interference of two photons from a microcavity single-photon source. Opt. Express 13, 7772 (2005)

    Article  ADS  Google Scholar 

  40. V. Giesz, S.L. Portalupi, T. Grange, C. Antn, L. De Santis, J. Demory, N. Somaschi, I. Sagnes, A. Lematre, L. Lanco, A. Auffèves, P. Senellart, Cavity-enhanced two-photon interference using remote quantum dot sources. Phys. Rev. B 92, 161302 (2015)

    Article  ADS  Google Scholar 

  41. H.S. Nguyen, G. Sallen, C. Voisin, P. Roussignol, C. Diederichs, G. Cassabois, Ultra-coherent single photon source. Appl. Phys. Lett. 99, 261904 (2011)

    Article  ADS  Google Scholar 

  42. A.J. Bennett, J.P. Lee, D.J.P. Ellis, T. Meany, E. Murray, F.F. Floether, J.P. Griffths, I. Farrer, D.A. Ritchie, A.J. Shields, Cavity-enhanced coherent light scattering from a quantum dot. Sci. Adv. 2, e1501256 (2016)

    Article  ADS  Google Scholar 

  43. C. Matthiesen, A.N. Vamivakas, M. Atatüre, Subnatural Linewidth Single Photons from a Quantum Dot. Phys. Rev. Lett. 108, 093602 (2012)

    Article  ADS  Google Scholar 

  44. C. Matthiesen, M. Geller, C.H.H. Schulte, C. Le Gall, J. Hansom, Z. Li, M. Hugues, E. Clarke, M. Atatüre, Phase-locked indistinguishable photons with synthesized waveforms from a solid-state source. Nat. Commun. 4, 1600 (2013)

    Article  Google Scholar 

  45. S. Ates, S. Ulrich, S. Reitzenstein, A. Löffler, A. Forchel, P. Michler, Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity. Phys. Rev. Lett. 103, 167402 (2009)

    Article  ADS  Google Scholar 

  46. E.M. Purcell, Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946)

    Article  Google Scholar 

  47. B.R. Mollow, Power spectrum of light scattered by two-level systems. Phys. Rev. 188, 1969–1975 (1969)

    Article  ADS  Google Scholar 

  48. A. Ulhaq, S. Weiler, S.M. Ulrich, R. Roßbach, M. Jetter, P. Michler, Cascaded single-photon emission from the Mollow triplet sidebands of a quantum dot. Nat. Photonics 6, 238 (2012)

    Article  ADS  Google Scholar 

  49. S.M. Ulrich, S. Ates, S. Reitzenstein, A. Löffler, A. Forchel, P. Michler, Dephasing of Mollow triplet sideband emission of a resonantly driven quantum dot in a microcavity. Phys. Rev. Lett. 106, 247403 (2011)

    Article  ADS  Google Scholar 

  50. S. Weiler, D. Stojanovic, S.M. Ulrich, M. Jetter, P. Michler, Postselected indistinguishable single-photon emission from the Mollow triplet sidebands of a resonantly excited quantum dot. Phys. Rev. B 87, 241302 (2013)

    Article  ADS  Google Scholar 

  51. Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, J.-W. Pan, On-demand semiconductor single-photon source with near-unity indistinguishability. Nat. Nanotechnol. 8, 213 (2013)

    Article  ADS  Google Scholar 

  52. H.J. Kimble, The quantum internet. Nature 453, 1023 (2008)

    Google Scholar 

  53. S.D. Barrett, P. Kok, Efficient high-fidelity quantum computation using matter qubits and linear optics. Phys. Rev. A 71, 060301 (2005)

    Article  Google Scholar 

  54. X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, J.-W. Pan, On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett. 116, 020401 (2016)

    Article  ADS  Google Scholar 

  55. N. Somaschi, V. Giesz, L. De Santis, J.C. Loredo, M.P. Almeida, G. Hornecker, S.L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N.D. Lanzillotti-Kimura, A. Lemaître, A. Auffèves, A.G. White, L. Lanco, P. Senellart, Near-optimal single-photon sources in the solid state. Nat. Photonics 10, 340 (2016)

    Article  ADS  Google Scholar 

  56. A. Kiraz, M. Atatüre, A. Imamoglu, Quantum-dot single-photon sources: prospects for applications in linear optics quantum-information processing. Phys. Rev. A 69, 032305 (2004)

    Article  ADS  Google Scholar 

  57. J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, M. Żukowski, Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777838 (2012)

    Google Scholar 

  58. M. Barbieri, Effects of frequency correlation in linear optical entangling gates operated with independent photons. Phys. Rev. A 76, 043825 (2007)

    Article  ADS  Google Scholar 

  59. S. Unsleber, Y.-M. He, S. Gerhardt, S. Maier, C.-Y. Lu, J.-W. Pan, N. Gregersen, M. Kamp, C. Schneider, S. Höfling, Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with \(74\)% extraction efficiency. Opt. Express 24, 8539 (2016)

    Article  ADS  Google Scholar 

  60. H. Wang, Z.-C. Duan, Y.-H. Li, S. Chen, J.-P. Li, Y.-M. He, M.-C. Chen, Y. He, X. Ding, C.-Z. Peng, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, J.-W. Pan, Near-transform-limited single photons from an efficient solid-state quantum emitter. Phys. Rev. Lett. 116, 213601 (2016)

    Article  ADS  Google Scholar 

  61. K. Bergmann, N.V. Vitanov, B.W. Shore, Perspective: stimulated Raman adiabatic passage: the status after 25 years. J. Chem. Phys. 142, 170901 (2015)

    Article  ADS  Google Scholar 

  62. Y. Wei, Y.-M. He, M. Chen, Y. Hu, Y. He, D. Wu, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, J.-W. Pan, Deterministic and robust generation of single photons from a single quantum dot with \(99.5\)% indistinguishability using adiabatic rapid passage. Nano Lett. 14, 6515 (2014)

    Article  ADS  Google Scholar 

  63. G. Fernandez, T. Volz, R. Desbuquois, A. Badolato, A. Imamoglu, Optically tunable spontaneous Raman fluorescence from a single self-assembled InGaAs quantum dot. Phys. Rev. Lett. 103, 087406 (2009)

    Article  ADS  Google Scholar 

  64. Y. He, Y.M. He, Y.J. Wei, X. Jiang, M.C. Chen, F.L. Xiong, Y. Zhao, C. Schneider, M. Kamp, S. Höfling, C.Y. Lu, J.W. Pan, Indistinguishable tunable single photons emitted by spin-flip Raman transitions in InGaAs quantum dots. Phys. Rev. Lett. 111, 237403 (2013)

    Article  ADS  Google Scholar 

  65. K. Brunner, G. Abstreiter, G. Bhm, G. Trnkle, G. Weimann, Sharp-line photoluminescence and two-photon absorption of zero-dimensional biexcitons in a GaAs/AlGaAs structure. Phys. Rev. Lett. 73, 1138 (1994)

    Article  ADS  Google Scholar 

  66. M. Müller, S. Bounouar, K.D. Jöns, M. Glässl, P. Michler, On-demand generation of indistinguishable polarization-entangled photon pairs. Nat. Photonics 8, 224 (2014)

    Google Scholar 

  67. D. Huber, M. Reindl, Y. Huo, H. Huang, J.S. Wildmann, O.G. Schmidt, A. Rastelli, R. Trotta, Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots (2016). arXiv:1610.06889v1

  68. H. Jayakumar, A. Predojević, T. Huber, T. Kauten, G.S. Solomon, G. Weihs, Deterministic photon pairs and coherent optical control of a single quantum dot. Phys. Rev. Lett. 110, 135505 (2013)

    Article  ADS  Google Scholar 

  69. J.H. Quilter, A.J. Brash, F. Liu, M. Glässl, A.M. Barth, V.M. Axt, A.J. Ramsay, M.S. Skolnick, A.M. Fox, Phonon-assisted population inversion of a single InGaAs/GaAs quantum dot by pulsed laser excitation. Phys. Rev. Lett. 114, 137401 (2015)

    Article  ADS  Google Scholar 

  70. S. Bounouar, M. Müller, A.M. Barth, M. Glässl, V.M. Axt, P. Michler, Phonon-assisted robust and deterministic two-photon biexciton preparation in a quantum dot. Phys. Rev. B 91, 161302 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Luca Portalupi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Portalupi, S.L., Michler, P. (2017). Resonantly Excited Quantum Dots: Superior Non-classical Light Sources for Quantum Information. In: Michler, P. (eds) Quantum Dots for Quantum Information Technologies. Nano-Optics and Nanophotonics. Springer, Cham. https://doi.org/10.1007/978-3-319-56378-7_3

Download citation

Publish with us

Policies and ethics