Resonantly Excited Quantum Dots: Superior Non-classical Light Sources for Quantum Information

  • Simone Luca PortalupiEmail author
  • Peter Michler
Part of the Nano-Optics and Nanophotonics book series (NON)


In this contribution, we briefly recall the fundamental optical and quantum optical properties of single photons and photon pairs, like coherence, purity, indistinguishability and entanglement, which are necessary to understand their huge potential for quantum information applications. We put special emphasis on resonant excitation schemes of excitons and biexcitons in semiconductor quantum dots since these provide photon wave packets with superior properties. This includes continuous-wave and pulsed excitation, rapid adiabatic passage, spin-flip Raman transitions, two-photon excitation and phonon-assisted excitation methods for excitons and biexcitons. We then review the recent progress on the generation of single and entangled photon states under these different resonant excitation schemes and discuss the pro and cons of the different methods.


Resonant Excitation Rabi Oscillation Pure Dephasing Entangle Photon Pair Fine Structure Splitting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    P. Michler, A. Kiraz, C. Becher, W.V. Schoenfeld, P.M. Petroff, L. Zhang, E. Hu, A. Imamoğlu, A quantum dot single-photon turnstile device. Science 290, 2282 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    Z. Yuan, B.E. Kardynal, R.M. Stevenson, A.J. Shields, C.J. Lobo, K. Cooper, N.S. Beattie, D.A. Ritchie, M. Pepper, Electrically driven single-photon source. Science 295, 102 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    N. Akopian, N.H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B.D. Gerardot, P.M. Petroff, Entangled photon pairs from semiconductor quantum dots. Phys. Rev. Lett. 96, 130501 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    R.M. Stevenson, R.J. Young, P. Atkinson, K. Cooper, D.A. Ritchie, A.J. Shields, A semiconductor source of triggered entangled photon pairs. Nature 439, 179 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    R. Hafenbrak, S.M. Ulrich, P. Michler, L. Wang, A. Rastelli, O.G. Schmidt, Triggered polarization-entangled photon pairs from a single quantum dot up to 30 K. New J. Phys. 9, 315 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    M. Varnava, D.E. Browne, T. Rudolph, How good must single photon sources and detectors be for efficient linear optical quantum computation? Phys. Rev. Lett. 100, 060502 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    I. Aharonovich, D. Englund, M. Toth, Solid-state single-photon emitters. Nat. Photonics 10, 631 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    A. Muller, E.B. Flagg, P. Bianucci, X.Y. Wang, D.G. Deppe, W. Ma, J. Zhang, G.J. Salamo, M. Xiao, C.K. Shih, Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity. Phys. Rev. Lett. 99, 187402 (2007)Google Scholar
  9. 9.
    A.N. Vamivakas, Y. Zhao, C.-Y. Lu, M. Atatüre, Spin-resolved quantum-dot resonance fluorescence. Nat. Phys. 5, 198 (2009)CrossRefGoogle Scholar
  10. 10.
    P. Michler, Single Semiconductor Quantum Dots (Springer, Berlin, 2009)CrossRefGoogle Scholar
  11. 11.
    C.K. Hong, Z.Y. Ou, L. Mandel, Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044 (1987)ADSCrossRefGoogle Scholar
  12. 12.
    H.S. Nguyen, G. Sallen, C. Voisin, P. Roussignol, C. Diederichs, G. Cassabois, Optically gated resonant emission of single quantum dots. Phys. Rev. Lett. 108, 057401 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    A.V. Kuhlmann, J.H. Prechtel, J. Houel, A. Ludwig, D. Reuter, A.D. Wieck, R.J. Warburton, Transform-limited single photons from a single quantum dot. Nat. Commun. 6, 8204 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    K.A. Fischer, K. Müller, K.G. Lagoudakis, J. Vuc̆ković, Dynamical modeling of pulsed two-photon interference. New J. Phys. 18, 113053 (2016)Google Scholar
  15. 15.
    H. Benisty, H. De Neve, C. Weisbuch, Impact of planar microcavity effects on light extraction-Part I: basic concepts and analytical trends. IEEE J. Quantum Electron. 34, 1612 (1998)ADSCrossRefGoogle Scholar
  16. 16.
    N. Gregersen, P. Kaer, J. Mørk, Modeling and design of high-efficiency single-photon sources. IEEE J. Sel. Top. Quantum Electron. 19, 9000516 (2013)CrossRefGoogle Scholar
  17. 17.
    J. Finley, P. Fry, A. Ashmore, A. Lemaître, A. Tartakovskii, R. Oulton, D. Mowbray, M. Skolnick, M. Hopkinson, P.D. Buckle, P. Maksym, Observation of multicharged excitons and biexcitons in a single InGaAs quantum dot. Phys. Rev. B 63, 161305 (2001)ADSCrossRefGoogle Scholar
  18. 18.
    M. Metcalfe, S.M. Carr, A. Muller, G.S. Solomon, J. Lawall, Resolved sideband emission of InAs/GaAs quantum dots strained by surface acoustic waves. Phys. Rev. Lett. 105, 037401 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    S.L. Portalupi, G. Hornecker, V. Giesz, T. Grange, A. Lemaître, J. Demory, I. Sagnes, N.D. Lanzillotti-Kimura, L. Lanco, A. Auffèves, P. Senellart, Bright phonon-tuned single-photon source. Nano Lett. 15, 6290 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    O. Gazzano, S. Michaelis de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, P. Senellart, Bright solid-state sources of indistinguishable single photons. Nat. Commun. 4, 1425 (2013)CrossRefGoogle Scholar
  21. 21.
    J. Claudon, J. Bleuse, N.S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, J.-M. Gérard, A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nat. Photonics 4, 174 (2010)ADSGoogle Scholar
  22. 22.
    M. Munsch, N.S. Malik, E. Dupuy, A. Delga, J. Bleuse, J.-M. Gérard, J. Claudon, N. Gregersen, J. Mørk, Dielectric GaAs antenna ensuring an efficient broadband coupling between an InAs quantum dot and a gaussian optical beam. Phys. Rev. Lett. 110, 177402 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, S. Reitzenstein, Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography. Nature Commun. 6, 7662 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    A. Schwagmann, S. Kalliakos, I. Farrer, J.P. Griffiths, G.A.C. Jones, D.A. Ritchie, A.J. Shields, On-chip single photon emission from an integrated semiconductor quantum dot into a photonic crystal waveguide. Appl. Phys. Lett. 99, 261108 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    A. Laucht, S. Pütz, T. Günthner, N. Hauke, R. Saive, S. Frédérick, M. Bichler, M.-C. Amann, A.W. Holleitner, M. Kaniber, J.J. Finley, Awaveguide-coupled on-chip single-photon source. Phys. Rev. X 2, 011014 (2012)Google Scholar
  26. 26.
    M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E.H. Lee, J.D. Song, S. Stobbe, P. Lodahl, Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Phys. Rev. Lett. 113, 093603 (2014)Google Scholar
  27. 27.
    A. Einstein, B. Podolsky, N. Rosen, Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)ADSCrossRefzbMATHGoogle Scholar
  28. 28.
    G. Vidal, R.F. Werner, Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)ADSCrossRefGoogle Scholar
  29. 29.
    S. Hill, W.K. Wootters, Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)ADSCrossRefGoogle Scholar
  30. 30.
    V. Coffman, J. Kundu, W.K. Wootters, Distributed entanglement. Phys. Rev. A 61, 052306 (2000)ADSCrossRefGoogle Scholar
  31. 31.
    D.F.V. James, P.G. Kwiat, W.J. Munro, A.G. White, Measurement of qubits. Phys. Rev. A 64, 052312 (2001)ADSCrossRefGoogle Scholar
  32. 32.
    C.H. Bennett, H.J. Bernstein, S. Popescu, B. Schumacher, Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)ADSCrossRefGoogle Scholar
  33. 33.
    A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, P. Senellart, Ultrabright source of entangled photon pairs. Nature 466, 217 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    K.D. Jöns, R. Hafenbrak, P. Atkinson, A. Rastelli, O.G. Schmidt, P. Michler, Quantum state tomography measurements on strain-tuned InxGa1-xAs/GaAs quantum dots. Phys. Status Solidi B 249, 697 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    Y. Chen, J. Zhang, M. Zopf, K. Jung, Y. Zhang, R. Keil, F. Ding, O.G. Schmidt, Wavelength-tunable entangled photons from silicon-integrated III-V quantum dots. Nat. Commun. 7, 10387 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    R. Trotta, J. Martn-Snchez, J.S. Wildmann, G. Piredda, M. Reindl, C. Schimpf, E. Zallo, S. Stroj, J. Edlinger, A. Rastelli, Wavelength-tunable sources of entangled photons interfaced with atomic vapours. Nat. Commun. 7, 10375 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    I.N. Stranski, L. Krastanow, Sitz. Ber. Akad. Wiss., Math.-naturwiss. Kl. Abt. IIb 146, 797 (1938)Google Scholar
  38. 38.
    B. Patton, W. Langbein, U. Woggon, Trion, biexciton, and exciton dynamics in single self-assembled CdSe quantum dots. Phys. Rev. B 68, 125316 (2003)ADSCrossRefGoogle Scholar
  39. 39.
    A.J. Bennett, D.C. Unitt, A.J. Shields, P. Atkinson, D.A. Ritchie, Influence of exciton dynamics on the interference of two photons from a microcavity single-photon source. Opt. Express 13, 7772 (2005)ADSCrossRefGoogle Scholar
  40. 40.
    V. Giesz, S.L. Portalupi, T. Grange, C. Antn, L. De Santis, J. Demory, N. Somaschi, I. Sagnes, A. Lematre, L. Lanco, A. Auffèves, P. Senellart, Cavity-enhanced two-photon interference using remote quantum dot sources. Phys. Rev. B 92, 161302 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    H.S. Nguyen, G. Sallen, C. Voisin, P. Roussignol, C. Diederichs, G. Cassabois, Ultra-coherent single photon source. Appl. Phys. Lett. 99, 261904 (2011)ADSCrossRefGoogle Scholar
  42. 42.
    A.J. Bennett, J.P. Lee, D.J.P. Ellis, T. Meany, E. Murray, F.F. Floether, J.P. Griffths, I. Farrer, D.A. Ritchie, A.J. Shields, Cavity-enhanced coherent light scattering from a quantum dot. Sci. Adv. 2, e1501256 (2016)ADSCrossRefGoogle Scholar
  43. 43.
    C. Matthiesen, A.N. Vamivakas, M. Atatüre, Subnatural Linewidth Single Photons from a Quantum Dot. Phys. Rev. Lett. 108, 093602 (2012)ADSCrossRefGoogle Scholar
  44. 44.
    C. Matthiesen, M. Geller, C.H.H. Schulte, C. Le Gall, J. Hansom, Z. Li, M. Hugues, E. Clarke, M. Atatüre, Phase-locked indistinguishable photons with synthesized waveforms from a solid-state source. Nat. Commun. 4, 1600 (2013)CrossRefGoogle Scholar
  45. 45.
    S. Ates, S. Ulrich, S. Reitzenstein, A. Löffler, A. Forchel, P. Michler, Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity. Phys. Rev. Lett. 103, 167402 (2009)ADSCrossRefGoogle Scholar
  46. 46.
    E.M. Purcell, Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946)CrossRefGoogle Scholar
  47. 47.
    B.R. Mollow, Power spectrum of light scattered by two-level systems. Phys. Rev. 188, 1969–1975 (1969)ADSCrossRefGoogle Scholar
  48. 48.
    A. Ulhaq, S. Weiler, S.M. Ulrich, R. Roßbach, M. Jetter, P. Michler, Cascaded single-photon emission from the Mollow triplet sidebands of a quantum dot. Nat. Photonics 6, 238 (2012)ADSCrossRefGoogle Scholar
  49. 49.
    S.M. Ulrich, S. Ates, S. Reitzenstein, A. Löffler, A. Forchel, P. Michler, Dephasing of Mollow triplet sideband emission of a resonantly driven quantum dot in a microcavity. Phys. Rev. Lett. 106, 247403 (2011)ADSCrossRefGoogle Scholar
  50. 50.
    S. Weiler, D. Stojanovic, S.M. Ulrich, M. Jetter, P. Michler, Postselected indistinguishable single-photon emission from the Mollow triplet sidebands of a resonantly excited quantum dot. Phys. Rev. B 87, 241302 (2013)ADSCrossRefGoogle Scholar
  51. 51.
    Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, J.-W. Pan, On-demand semiconductor single-photon source with near-unity indistinguishability. Nat. Nanotechnol. 8, 213 (2013)ADSCrossRefGoogle Scholar
  52. 52.
    H.J. Kimble, The quantum internet. Nature 453, 1023 (2008)Google Scholar
  53. 53.
    S.D. Barrett, P. Kok, Efficient high-fidelity quantum computation using matter qubits and linear optics. Phys. Rev. A 71, 060301 (2005)CrossRefGoogle Scholar
  54. 54.
    X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, J.-W. Pan, On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett. 116, 020401 (2016)ADSCrossRefGoogle Scholar
  55. 55.
    N. Somaschi, V. Giesz, L. De Santis, J.C. Loredo, M.P. Almeida, G. Hornecker, S.L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N.D. Lanzillotti-Kimura, A. Lemaître, A. Auffèves, A.G. White, L. Lanco, P. Senellart, Near-optimal single-photon sources in the solid state. Nat. Photonics 10, 340 (2016)ADSCrossRefGoogle Scholar
  56. 56.
    A. Kiraz, M. Atatüre, A. Imamoglu, Quantum-dot single-photon sources: prospects for applications in linear optics quantum-information processing. Phys. Rev. A 69, 032305 (2004)ADSCrossRefGoogle Scholar
  57. 57.
    J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, M. Żukowski, Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777838 (2012)Google Scholar
  58. 58.
    M. Barbieri, Effects of frequency correlation in linear optical entangling gates operated with independent photons. Phys. Rev. A 76, 043825 (2007)ADSCrossRefGoogle Scholar
  59. 59.
    S. Unsleber, Y.-M. He, S. Gerhardt, S. Maier, C.-Y. Lu, J.-W. Pan, N. Gregersen, M. Kamp, C. Schneider, S. Höfling, Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with \(74\)% extraction efficiency. Opt. Express 24, 8539 (2016)ADSCrossRefGoogle Scholar
  60. 60.
    H. Wang, Z.-C. Duan, Y.-H. Li, S. Chen, J.-P. Li, Y.-M. He, M.-C. Chen, Y. He, X. Ding, C.-Z. Peng, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, J.-W. Pan, Near-transform-limited single photons from an efficient solid-state quantum emitter. Phys. Rev. Lett. 116, 213601 (2016)ADSCrossRefGoogle Scholar
  61. 61.
    K. Bergmann, N.V. Vitanov, B.W. Shore, Perspective: stimulated Raman adiabatic passage: the status after 25 years. J. Chem. Phys. 142, 170901 (2015)ADSCrossRefGoogle Scholar
  62. 62.
    Y. Wei, Y.-M. He, M. Chen, Y. Hu, Y. He, D. Wu, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, J.-W. Pan, Deterministic and robust generation of single photons from a single quantum dot with \(99.5\)% indistinguishability using adiabatic rapid passage. Nano Lett. 14, 6515 (2014)ADSCrossRefGoogle Scholar
  63. 63.
    G. Fernandez, T. Volz, R. Desbuquois, A. Badolato, A. Imamoglu, Optically tunable spontaneous Raman fluorescence from a single self-assembled InGaAs quantum dot. Phys. Rev. Lett. 103, 087406 (2009)ADSCrossRefGoogle Scholar
  64. 64.
    Y. He, Y.M. He, Y.J. Wei, X. Jiang, M.C. Chen, F.L. Xiong, Y. Zhao, C. Schneider, M. Kamp, S. Höfling, C.Y. Lu, J.W. Pan, Indistinguishable tunable single photons emitted by spin-flip Raman transitions in InGaAs quantum dots. Phys. Rev. Lett. 111, 237403 (2013)ADSCrossRefGoogle Scholar
  65. 65.
    K. Brunner, G. Abstreiter, G. Bhm, G. Trnkle, G. Weimann, Sharp-line photoluminescence and two-photon absorption of zero-dimensional biexcitons in a GaAs/AlGaAs structure. Phys. Rev. Lett. 73, 1138 (1994)ADSCrossRefGoogle Scholar
  66. 66.
    M. Müller, S. Bounouar, K.D. Jöns, M. Glässl, P. Michler, On-demand generation of indistinguishable polarization-entangled photon pairs. Nat. Photonics 8, 224 (2014)Google Scholar
  67. 67.
    D. Huber, M. Reindl, Y. Huo, H. Huang, J.S. Wildmann, O.G. Schmidt, A. Rastelli, R. Trotta, Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots (2016). arXiv:1610.06889v1
  68. 68.
    H. Jayakumar, A. Predojević, T. Huber, T. Kauten, G.S. Solomon, G. Weihs, Deterministic photon pairs and coherent optical control of a single quantum dot. Phys. Rev. Lett. 110, 135505 (2013)ADSCrossRefGoogle Scholar
  69. 69.
    J.H. Quilter, A.J. Brash, F. Liu, M. Glässl, A.M. Barth, V.M. Axt, A.J. Ramsay, M.S. Skolnick, A.M. Fox, Phonon-assisted population inversion of a single InGaAs/GaAs quantum dot by pulsed laser excitation. Phys. Rev. Lett. 114, 137401 (2015)ADSCrossRefGoogle Scholar
  70. 70.
    S. Bounouar, M. Müller, A.M. Barth, M. Glässl, V.M. Axt, P. Michler, Phonon-assisted robust and deterministic two-photon biexciton preparation in a quantum dot. Phys. Rev. B 91, 161302 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institut für Halbleiteroptik und Funktionelle GrenzflächenUniversity of StuttgartStuttgartGermany

Personalised recommendations