Advertisement

Interfacing Single Quantum Dot Spins with Photons Using a Nanophotonic Cavity

  • Shuo Sun
  • Edo Waks
Chapter
Part of the Nano-Optics and Nanophotonics book series (NON)

Abstract

The spin of a single electron or hole trapped inside a quantum dot offers a promising quantum memory. These qubits are embedded in a host semiconductor material that can be directly patterned to form compact integrated nanophotonic devices. These devices efficiently interconnect single solid-state qubits with photons, a crucial requirement for quantum networks, quantum repeaters, and photonic quantum computation. This chapter reviews recent experimental progress towards achieving strong spin-photon interactions based on coupled quantum dot and nanophotonic cavity system. Especially we introduce a recent work that reports a coherent spin-photon quantum switch operating at the fundamental quantum limit, where a single photon flips the orientation of a quantum dot spin and the spin flips the polarization of the photon. These strong spin-photon interactions open up a promising direction for solid-state implementations of high-speed quantum networks and on-chip quantum photonic circuits using nanophotonic devices.

Keywords

Photonic Crystal Cavity Mode Quantum Network Spin Qubit Rotation Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J.I. Cirac, P. Zoller, H.J. Kimble, H. Mabuchi, Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78(16), 3221 (1997)ADSCrossRefGoogle Scholar
  2. 2.
    H. Jeff Kimble, The quantum internet. Nature 453(7198), 1023–1030 (2008)CrossRefGoogle Scholar
  3. 3.
    J.I. Cirac, A.K. Ekert, S.F. Huelga, C. Macchiavello, Distributed quantum computation over noisy channels. Phys. Rev. A 59(6), 4249 (1999)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    J. Cho, H.-W. Lee, Generation of atomic cluster states through the cavity input-output process. Phys. Rev. Lett. 95(16), 160501 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, G. Rempe, An elementary quantum network of single atoms in optical cavities. Nature 484(7393), 195–200 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    J. Volz, R. Gehr, G. Dubois, J. Estève, J. Reichel, Measurement of the internal state of a single atom without energy exchange. Nature 475(7355), 210–213 (2011)CrossRefGoogle Scholar
  7. 7.
    A. Reiserer, S. Ritter, G. Rempe, Nondestructive detection of an optical photon. Science 342(6164), 1349–1351 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    T.G. Tiecke, J.D. Thompson, N.P. de Leon, L.R. Liu, V. Vuletić, M.D. Lukin, Nanophotonic quantum phase switch with a single atom. Nature 508(7495), 241–244 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    L.-M. Duan, H.J. Kimble, Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92(12), 127902 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    A. Reiserer, N. Kalb, G. Rempe, S. Ritter, A quantum gate between a flying optical photon and a single trapped atom. Nature 508(7495), 237–240 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    X. Xiaodong, W. Yao, B. Sun, D.G. Steel, A.S. Bracker, D. Gammon, L.J. Sham, Optically controlled locking of the nuclear field via coherent dark-state spectroscopy. Nature 459(7250), 1105–1109 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    D. Press, K. De Greve, P.L. McMahon, T.D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, Y. Yamamoto, Ultrafast optical spin echo in a single quantum dot. Nat. Photonics 4(6), 367–370 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    J. Berezovsky, M.H. Mikkelsen, N.G. Stoltz, L.A. Coldren, D.D. Awschalom, Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science 320(5874), 349–352 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    D. Press, T.D. Ladd, B. Zhang, Y. Yamamoto, Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456(7219), 218–221 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    E.D. Kim, K. Truex, X. Xu, B. Sun, D.G. Steel, A.S. Bracker, D. Gammon, L.J. Sham, Fast spin rotations by optically controlled geometric phases in a charge-tunable inas quantum dot. Phys. Rev. Lett. 104(16), 167401 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    K. De Greve, P.L. McMahon, D. Press, T.D. Ladd, D. Bisping, C. Schneider, M. Kamp, L. Worschech, S. Höfling, A. Forchel et al., Ultrafast coherent control and suppressed nuclear feedback of a single quantum dot hole qubit. Nat. Phys. 7(11), 872–878 (2011)CrossRefGoogle Scholar
  17. 17.
    T.M. Godden, J.H. Quilter, A.J. Ramsay, Y. Wu, P. Brereton, S.J. Boyle, I.J. Luxmoore, J. Puebla-Nunez, A.M. Fox, M.S. Skolnick, Coherent optical control of the spin of a single hole in an inas/gaas quantum dot. Phys. Rev. Lett. 108(1), 017402 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    Y. He, Y.-J. Yu-Ming He, X.J. Wei, M.-C. Chen, F.-L. Xiong, Y. Zhao, C. Schneider, M. Kamp, S. Höfling et al., Indistinguishable tunable single photons emitted by spin-flip raman transitions in ingaas quantum dots. Phys. Rev. Lett. 111(23), 237403 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    K. De Greve, Y. Leo, P.L. McMahon, J.S. Pelc, C.M. Natarajan, N.Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp et al., Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength. Nature 491(7424), 421–425 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    W.B. Gao, P. Fallahi, E. Togan, J. Miguel-Sánchez, A. Imamoglu, Observation of entanglement between a quantum dot spin and a single photon. Nature 491(7424), 426–430 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    J.R. Schaibley, A.P. Burgers, G.A. McCracken, L.-M. Duan, P.R. Berman, D.G. Steel, A.S. Bracker, D. Gammon, L.J. Sham, Demonstration of quantum entanglement between a single electron spin confined to an inas quantum dot and a photon. Phys. Rev. Lett. 110(16), 167401 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    K. De Greve, P.L. McMahon, Yu. Leo, J.S. Pelc, C. Jones, C.M. Natarajan, N.Y. Kim, E. Abe, S. Maier, C. Schneider, et al., Complete tomography of a high-fidelity solid-state entangled spin-photon qubit pair. Nat. Commun. 4, (2013)Google Scholar
  23. 23.
    W.B. Gao, P. Fallahi, E. Togan, A. Delteil, Y.S. Chin, J. Miguel-Sanchez, A. Imamoğlu, Quantum teleportation from a propagating photon to a solid-state spin qubit. Nat. Commun. 4 (2013)Google Scholar
  24. 24.
    A. Delteil, Z. Sun, W.-b. Gao, E. Togan, S. Faelt, A. Imamoglu, Generation of heralded entanglement between distant hole spins. Nat. Phys. (2015)Google Scholar
  25. 25.
    T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H.M. Gibbs, G. Rupper, C. Ell, O.B. Shchekin, D.G. Deppe, Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432(7014), 200–203 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    J.P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L.V. Keldysh, V.D. Kulakovskii, T.L. Reinecke, A. Forchel, Strong coupling in a single quantum dot-semiconductor microcavity system. Nature 432(7014), 197–200 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J.M. Gérard, J. Bloch, Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys. Rev. Lett. 95(6), 067401 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E.L. Hu, A. Imamoğlu, Quantum nature of a strongly coupled single quantum dot-cavity system. Nature 445(7130), 896–899 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    D. Englund, A. Faraon, B. Zhang, Y. Yamamoto, J. Vučković, Generation and transfer of single photons on a photonic crystal chip. Opt. Express 15(9), 5550–5558 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    A. Faraon, A. Majumdar, D. Englund, E. Kim, M. Bajcsy, J. Vučković, Integrated quantum optical networks based on quantum dots and photonic crystals. New J. Phys. 13(5), 055025 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, J. Vučković, Controlling cavity reflectivity with a single quantum dot. Nature 450(7171), 857–861 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    D. Englund, A. Majumdar, M. Bajcsy, A. Faraon, P. Petroff, J. Vučković, Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system. Phys. Rev. Lett. 108(9), 093604 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    R. Bose, D. Sridharan, H. Kim, G.S. Solomon, E. Waks, Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity. Phys. Rev. Lett. 108(22), 227402 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    T. Volz, A. Reinhard, M. Winger, A. Badolato, K.J. Hennessy, E.L. Hu, A. Imamoğlu, Ultrafast all-optical switching by single photons. Nat. Photonics 6(9), 605–609 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    K. Srinivasan, O. Painter, Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system. Nature 450(7171), 862–865 (2007)ADSCrossRefGoogle Scholar
  36. 36.
    I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, J. Vučković, Controlled phase shifts with a single quantum dot. Science 320(5877), 769–772 (2008)ADSCrossRefGoogle Scholar
  37. 37.
    D. Gerace, H.E. Türeci, A. Imamoglu, V. Giovannetti, R. Fazio, The quantum-optical josephson interferometer. Nat. Phys. 5(4), 281–284 (2009)CrossRefGoogle Scholar
  38. 38.
    A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, J. Vučković, Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade. Nat. Phys. 4(11), 859–863 (2008)CrossRefGoogle Scholar
  39. 39.
    K. Müller, A. Rundquist, K.A. Fischer, T. Sarmiento, K.G. Lagoudakis, Y.A. Kelaita, C.S. Muñoz, E. del Valle, F.P. Laussy, J. Vučković, Coherent generation of nonclassical light on chip via detuned photon blockade. Phys. Rev. Lett. 114(23), 233601 (2015)ADSCrossRefGoogle Scholar
  40. 40.
    H. Kim, R. Bose, T.C. Shen, G.S. Solomon, E. Waks, A quantum logic gate between a solid-state quantum bit and a photon. Nat. Photonics 7(5), 373–377 (2013)ADSCrossRefGoogle Scholar
  41. 41.
    M.T. Rakher, N.G. Stoltz, L.A. Coldren, P.M. Petroff, D. Bouwmeester, Externally mode-matched cavity quantum electrodynamics with charge-tunable quantum dots. Phys. Rev. Lett. 102(9), 097403 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    D. Pinotsi, J.M. Sanchez, P. Fallahi, A. Badolato, A. Imamoglu, Charge controlled self-assembled quantum dots coupled to photonic crystal nanocavities. Photonics Nanostruct. Fundam. Appl. 10(3), 256–262 (2012)ADSCrossRefGoogle Scholar
  43. 43.
    K.G. Lagoudakis, K. Fischer, T. Sarmiento, A. Majumdar, A. Rundquist, J. Lu, M. Bajcsy, J. Vučković, Deterministically charged quantum dots in photonic crystal nanoresonators for efficient spin-photon interfaces. New J. Phys. 15(11), 113056 (2013)ADSCrossRefGoogle Scholar
  44. 44.
    S.G. Carter, T.M. Sweeney, M. Kim, C.S. Kim, D. Solenov, S.E. Economou, T.L. Reinecke, L. Yang, A.S. Bracker, D. Gammon, Quantum control of a spin qubit coupled to a photonic crystal cavity. Nat. Photonics 7(4), 329–334 (2013)ADSCrossRefGoogle Scholar
  45. 45.
    C. Arnold, J. Demory, V. Loo, A. Lemaître, I. Sagnes, M. Glazov, O. Krebs, P. Voisin, P. Senellart, L. Lanco, Macroscopic rotation of photon polarization induced by a single spin. Nat. Commun. 6 (2015)Google Scholar
  46. 46.
    P. Androvitsaneas, A.B. Young, C. Schneider, S. Maier, M. Kamp, S. Höfling, S. Knauer, E. Harbord, C.Y. Hu, J.G. Rarity, R. Oulton, Charged quantum dot micropillar system for deterministic light-matter interactions. Phys. Rev. B 93, 241409 (2016). JunADSCrossRefGoogle Scholar
  47. 47.
    S. Sun, H. Kim, G.S. Solomon, E. Waks, A quantum phase switch between a single solid-state spin and a photon. Nat. Nanotechnol. 11(6), 539–544 (2016)ADSCrossRefGoogle Scholar
  48. 48.
    D.F. Walls, G.J. Milburn, Quantum Optics (Springer Science & Business Media, Heidelberg, 2007)zbMATHGoogle Scholar
  49. 49.
    S. Hughes, H. Kamada, Single-quantum-dot strong coupling in a semiconductor photonic crystal nanocavity side coupled to a waveguide. Phys. Rev. B 70(19), 195313 (2004)ADSCrossRefGoogle Scholar
  50. 50.
    E. Waks, J. Vuckovic, Dipole induced transparency in drop-filter cavity-waveguide systems. Phys. Rev. Lett. 96(15), 153601 (2006)ADSCrossRefGoogle Scholar
  51. 51.
    J.-T. Shen, S. Fan et al., Theory of single-photon transport in a single-mode waveguide. i. coupling to a cavity containing a two-level atom. Phys. Rev. A 79(2), 023837 (2009)ADSCrossRefGoogle Scholar
  52. 52.
    V. Giesz, N. Somaschi, G. Hornecker, T. Grange, B. Reznychenko, L. De Santis, J. Demory, C. Gomez, I. Sagnes, A. Lemaître, et al., Coherent manipulation of a solid-state artificial atom with few photons. Nat. Commun. 7 (2016)Google Scholar
  53. 53.
    A. Faraon, E. Waks, D. Englund, I. Fushman, J. Vučković, Efficient photonic crystal cavity-waveguide couplers. Appl. Phys. Lett. 90(7), 073102 (2007)ADSCrossRefGoogle Scholar
  54. 54.
    R. Bose, D. Sridharan, G.S. Solomon, E. Waks, Observation of strong coupling through transmission modification of a cavity-coupled photonic crystal waveguide. Opt. Express 19(6), 5398–5409 (2011)ADSCrossRefGoogle Scholar
  55. 55.
    T. Cai, R. Bose, G.S. Solomon, E. Waks, Controlled coupling of photonic crystal cavities using photochromic tuning. Appl. Phys. Lett. 102(14), 141118 (2013)ADSCrossRefGoogle Scholar
  56. 56.
    A.Y. Piggott, K.G. Lagoudakis, T. Sarmiento, M. Bajcsy, G. Shambat, J. Vučković, Photo-oxidative tuning of individual and coupled gaas photonic crystal cavities. Opt. Express 22(12), 15017–15023 (2014)ADSCrossRefGoogle Scholar
  57. 57.
    R. Bose, D. Sridharan, G.S. Solomon, E. Waks, Large optical stark shifts in semiconductor quantum dots coupled to photonic crystal cavities. Appl. Phys. Lett. 98(12), 121109 (2011)ADSCrossRefGoogle Scholar
  58. 58.
    C. Emary, X. Xu, D.G. Steel, S. Saikin, L.J. Sham, Fast initialization of the spin state of an electron in a quantum dot in the voigt configuration. Phys. Rev. Lett. 98(4), 047401 (2007)ADSCrossRefGoogle Scholar
  59. 59.
    X. Xiaodong, W. Yanwen, B. Sun, Q. Huang, J. Cheng, D.G. Steel, A.S. Bracker, D. Gammon, C. Emary, L.J. Sham, Fast spin state initialization in a singly charged inas-gaas quantum dot by optical cooling. Phys. Rev. Lett. 99(9), 097401 (2007)ADSCrossRefGoogle Scholar
  60. 60.
    S. Sun, E. Waks, Deterministic generation of entanglement between a quantum-dot spin and a photon. Phys. Rev. A 90(4), 042322 (2014)ADSCrossRefGoogle Scholar
  61. 61.
    S. Sun, E. Waks, Single-shot optical readout of a quantum bit using cavity quantum electrodynamics. Phys. Rev. A 94, 012307 (2016). JulADSCrossRefGoogle Scholar
  62. 62.
    Y. Ota, M. Shirane, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, S. Yorozu, Y. Arakawa, Vacuum rabi splitting with a single quantum dot embedded in a h1 photonic crystal nanocavity. Appl. Phys. Lett. 94(3), 3102 (2009)CrossRefGoogle Scholar
  63. 63.
    R. Ohta, Y. Ota, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, Y. Arakawa, Strong coupling between a photonic crystal nanobeam cavity and a single quantum dot. Appl. Phys. Lett. 98(17), 3104 (2011)ADSCrossRefGoogle Scholar
  64. 64.
    E. Weidner, S. Combrié, A. De Rossi, J. Nagle, S. Cassette, A. Talneau, H. Benisty et al., Achievement of ultrahigh quality factors in gaas photonic crystal membrane nanocavity. Appl. Phys. Lett. 89(22), 221104 (2006)ADSCrossRefGoogle Scholar
  65. 65.
    S. Combrié, A. De Rossi, Q.V. Tran, H. Benisty, Gaas photonic crystal cavity with ultrahigh q: microwatt nonlinearity at 1.55 \(\upmu \)m. Opt. Lett. 33(16), 1908–1910 (2008)ADSCrossRefGoogle Scholar
  66. 66.
    C. Schneider, M. Strauß, T. Sünner, A. Huggenberger, D. Wiener, S. Reitzenstein, M. Kamp, S. Höfling, A. Forchel, Lithographic alignment to site-controlled quantum dots for device integration. Appl. Phys. Lett. 92(18), 183101 (2008)ADSCrossRefGoogle Scholar
  67. 67.
    M.K. Yakes, L. Yang, A.S. Bracker, T.M. Sweeney, P.G. Brereton, M. Kim, C.S. Kim, P.M. Vora, D. Park, S.G. Carter et al., Leveraging crystal anisotropy for deterministic growth of inas quantum dots with narrow optical linewidths. Nano Lett. 13(10), 4870–4875 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Electrical and Computer Engineering, Institute for Research in Electronics and Applied Physics (IREAP), and Joint Quantum Institute (JQI)University of MarylandCollege ParkUSA

Personalised recommendations