Skip to main content

Thresholds

  • Chapter
  • First Online:
Radiobiology and Radiation Hormesis
  • 754 Accesses

Abstract

Thresholds are antithetical to the LNT. There is no physical or chemical agent that does not exhibit a toxic threshold in humans, including ionizing radiation. Too little or too much radiation are harmful. Ignoring radiation thresholds and the hormesis dose range is detrimental to health. All alpha, beta and gamma emitting radionuclides have thresholds for cancer induction in animals and humans. The cellular mechanisms of hormesis are similar to those seen for caloric restriction, but very different than mechanisms seen for high radiation doses.

The greatest tragedy of science is the slaying of a beautiful hypothesis by an ugly fact (T.H. Huxley).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Department of Energy, DOE Low Dose Program, 2014.

  2. 2.

    NCRP-121, 1995.

  3. 3.

    NCRP-136, 2001.

  4. 4.

    French Academy of Medicine, 2001.

References

  1. Hadley C (2003) What doesn’t kill you makes you stronger. A new model for risk assessment may not only revolutionize the field of toxicology, but also have vast implications for risk assessment. EMBO Rep. 4(10):924–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. http://www.dose-response.org

  3. Lewis EB (1957) Leukemia and ionizing radiation. Science 125:965–972

    Article  CAS  PubMed  Google Scholar 

  4. National Academy of Sciences (1956) The biological effects of atomic radiation: summary reports. National Academy of Science—National Research Council, Washington

    Google Scholar 

  5. Sanders CL (1996) Prevention and therapy of cancer and other common diseases: alternative and traditional approaches. Infomedix, Richland, 3000pp CD-ROM.

    Google Scholar 

  6. Mao L, Franke J (2013) Hormesis in aging and neurodegeneration—a prodigy awaiting dissection. Int J Mol Sci 14:13109–13128

    Article  PubMed  PubMed Central  Google Scholar 

  7. Vaiserman A (ed) 2017 Anti-aging drugs: from basic research to clinical practice. Royal Society of Chemistry, London, 592p

    Google Scholar 

  8. Rattan SIS, Demirovic D (2010) Hormesis as a mechanism for the anti-aging effects of caloric restriction. In: Everitt A, SIS R, Le Couteur D et al (eds) Caloric restriction, aging and longevity. Springer, Dordrecht, pp 233–245

    Chapter  Google Scholar 

  9. McCay CM, Maynard LA, Sperling G et al (1939) Retarded growth, life span, ultimate body size and age changes in the albino rat after feeding diets restricted in calories. J Nutr 18:1–13

    CAS  Google Scholar 

  10. National Council on Radiation Protection and Measurements (NCRP) Report 17 (1954) Permissible dose from external sources of ionizing radiation. NCRP, Bethesda

    Google Scholar 

  11. Aurengo A, Averbeck D, Bpannin A et al (2005) Dose-effect relationships and estimation of the carcinogenic effects of low doses of ionizing radiation. Executive summary. French Academy of Sciences and French National Academy of Medicine, Paris

    Google Scholar 

  12. Doss M (2013) Linear-no-threshold model vs radiation hormesis. Dose Response 11:480–497

    Article  PubMed  Google Scholar 

  13. Sanders CL (2010) Radiation hormesis and the linear no threshold assumption. Springer, Heidelberg

    Book  Google Scholar 

  14. Szilard L (1959) On the nature of aging process. Proc Natl Acad Sci U S A 45:30–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rattan SIS (2008) Hormesis in aging. Ageing Res Rev 7:63–78

    Article  PubMed  Google Scholar 

  16. Sivertsen I, Dahlstrom AW (1921) The relation of muscular activity to carcinoma. A preliminary report. J Cancer Res 6:365–378

    Google Scholar 

  17. Luckey TD (2008) Abundant health from radioactive waste. Int J Low Radiat 5:71–82

    Article  Google Scholar 

  18. Arumugam TV, Gleichmann M, Tang SC et al (2006) Hormesis/preconditioning mechanisms, the nervous system and aging. Ageing Res Rev 5:165–178

    Article  CAS  PubMed  Google Scholar 

  19. Duliu OG, R Margineanu, C Simion et al. 2012. The Slanic-Prahova (Romania) salt mine ultra-low background radiation laboratory. microbq.nipne.ro/docs/prezentari/8_otavian_duliu_UnivBucharest.pdf

    Google Scholar 

  20. Luckey TD (1991) Radiation hormesis. CRC, Boca Raton

    Google Scholar 

  21. Warburton DE, Nicol CW, Bredlin SS (2006) Prescribing exercise as preventive therapy. CMAJ 174:961–974

    Article  PubMed  PubMed Central  Google Scholar 

  22. Boddy J Alien life could feed on cosmic rays. Science, October 7, 2016. http://www.sciencemag.org/news/2016/10/alien-life-could-feed-cosmic-rays

  23. Mitchel RE (2010) The dose window for radiation-induced protective adaptive responses. Dose Response 8:192–208

    Article  CAS  Google Scholar 

  24. Luckey TD (1980) Hormesis with ionizing radiation. CRC, Boca Raton

    Google Scholar 

  25. Calabrese EJ, Blain R (2005) The occurrence of hormetic dose responses in the toxicological literature, the hormesis database: an overview. Toxicol Appl Pharmacol 1202:289–301

    Article  Google Scholar 

  26. Tang FR, Loke WK, Khoo BC (2017) Low-dose or low-dose-rate ionizing radiation-induced bioeffects in animal models. J Radiat Res 58(2):165–182. doi:10.1093/jrr/rrw120

    PubMed  Google Scholar 

  27. Calabrese E (2011) The 10th annual international conference, The International Dose-Response Society, Amherst

    Google Scholar 

  28. United Nations Environment Programme (UNEP) (2016) Radiation effects and sources. UNEP, Vienna

    Google Scholar 

  29. EPA Radiogenic Cancer Risk Models and Projections for the U.S. Population (2008) Draft. U.S. Environmental Protection Agency. Office of Radiation and Indoor Air, Washington

    Google Scholar 

  30. Smith PG (1981) Mortality from cancer and all causes among British radiologists. Br J Radiol 54:187

    Article  CAS  PubMed  Google Scholar 

  31. Cameron JR (2002) Radiation increased the longevity of British radiologists. Br J Radiol 75:637–640

    Article  CAS  PubMed  Google Scholar 

  32. Yoshinaga S, Mabuchi K, Sigurdson AJ (2004) Cancer risks among radiologists and radiologic technologists: review of epidemiologic studies. Radiology 233:313–321

    Article  PubMed  Google Scholar 

  33. Berrington de Gonzallez A, Ntowe E, kitahara CM et al (2016) Long-term mortality in 43763 U.S. radiologists compared with 64990 U.S. psychiatrists. Radiology 281(3):843–857

    Article  Google Scholar 

  34. U.S. Department of Energy (2011) Low background radiation experiment yields interesting preliminary results, 009DR0511. U.S. Department of Energy, Carlsbad

    Google Scholar 

  35. Olivieri G, Bodycote J, Wolf S (1984) Adaptive response of human lymphocytes to low concentrations of radioactive thymidine. Science 223:594–597

    Article  CAS  PubMed  Google Scholar 

  36. Iwaoka K (2016) The current limits for radionuclides in food in Japan. Health Phys 111:471–478

    Article  CAS  PubMed  Google Scholar 

  37. Cuttler JM (2010) Commentary on using LNT for radiation protection and risk assessment. Dose Response 8:378–383

    Article  PubMed  PubMed Central  Google Scholar 

  38. Scott B (2008) Scientist Emeritus. Lovelace Respiratory Research Institute, Albuquerque

    Google Scholar 

  39. Hoeijmakers JH (2009) DNA damage, aging and cancer. NEJM 361:1475–1485

    Article  CAS  PubMed  Google Scholar 

  40. Wall BF (2009) Ionising radiation exposure of the population of the United States: NCRP report no. 160. Radiat Prot Dosim 136:136–138

    Article  CAS  Google Scholar 

  41. Lu L, Lu L, Hu B et al (2009) Low dose radiation-induced adaptive response preventing HPRT mutation is Fhit independent. Int J Radiat Biol 85:532–537

    Article  CAS  PubMed  Google Scholar 

  42. Gasser S, Raulet DH (2006) The DNA damage response arouses the immune system. Cancer Res 66:3959–3962

    Article  CAS  PubMed  Google Scholar 

  43. Yang G, Kong Q, Wang G et al (2014) Low-dose ionizing radiation induces direct activation of nature killer cells and provides a novel approach to adoptive cellular immunotherapy. Cancer Biother Radiopharm 29:428–434. doi:10.1089/cbr.2014.170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Elmore E, Lao X-Y, Kapadia R, Redpath JL (2009) Threshold-type dose response for induction of neoplastic transformation by 1 GeV/nucleon iron atoms. Radiat Res 171:674–770

    Article  Google Scholar 

  45. Feinendegen LE (2012) Hormesis by low dose radiation effects: low dose cancer risk modeling must recognize up-regulation of protection. In: Baum RP (ed) Therapeutic nuclear medicine. Springer, New York

    Google Scholar 

  46. Pollycover M, Feinendegen LE (2003) Radiation-induced versus endogenous DNA damage: possible effect of inducible protective responses in mitigating endogenous damage. Hum Exp Toxicol 22:290–306

    Article  Google Scholar 

  47. Kumar PRV, Cheriyan VD, Seshadri M (2012) Evaluation of spontaneous DNA damage in lymphocytes of healthy adult individuals from high-level natural radiation areas of Kerala in India. Radiat Res 177:643–650

    Article  CAS  PubMed  Google Scholar 

  48. Kuikka JT (2009) Low-dose radiation risk and the linear no-threshold model. Int J Low Radiat 6:157–163

    Article  Google Scholar 

  49. Neumaier T, Swenson J, Pham C et al (2012) Evidence for formation of DNA repair centers and dose-response. Nonlinearity in human cells. Proc Natl Acad Sci 109:443–448

    Article  PubMed  Google Scholar 

  50. Cotter TG (2009) Apoptosis and cancer: the genesis of a research field. Nat Rev Cancer 9:501–507

    Article  CAS  PubMed  Google Scholar 

  51. Mothersill C, Seymour C (2015) Radiation-induced non-targeted effects: some open questions. Radiat Prot Dosim 166:125–130

    Article  Google Scholar 

  52. Mothersill C, Seymour C (2014) Implications for human and environmental health of low doses of ionizing radiation. J Environ Radioact 133:5–9

    Article  CAS  PubMed  Google Scholar 

  53. Ulsh BA (2010) Checking the foundation: recent radiobiology and the linear no-threshold theory. Health Phys 99:747–758

    Article  CAS  PubMed  Google Scholar 

  54. Sedelnikova OA, Nakamura A, Kovalchuk O et al (2007) DNA double-strand breaks form in bystander cells after microbeam irradiation of three-dimensional human tissue models. Cancer Res 67:4295–4302

    Article  CAS  PubMed  Google Scholar 

  55. Nagasawa H, Little JB (1992) Induction of sister chromatid exchanges by extremely low doses of alpha-particles. Cancer Res 52:6394–6396

    CAS  PubMed  Google Scholar 

  56. Azzam EI, Little JB (2004) The radiation-induced bystander effect: evidence and significance. Hum Exp Toxicol 23:61–65

    Article  PubMed  Google Scholar 

  57. Zhou H, Randers-Pehrson G, Waldren CA et al (2000) Induction of a bystander mutagenic effect of alpha particles in mammalian cells. Proc Natl Acad Sci U S A 97:2099–2104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mitchell SA, Randers-Pehrson G, Brenner DJ et al (2004) The bystander response in C3H 10T1/2 cells: the influence of cell-to-cell contact. Radiat Res 161:397–401

    Article  CAS  PubMed  Google Scholar 

  59. Mitchell SA, Marino SA, Brenner DJ et al (2004) Bystander effect and adaptive response in C3H 10T(1/2) cells. Int J Radiat Biol 80:465–472

    Article  CAS  PubMed  Google Scholar 

  60. Blyth BJ, Sykes PJ (2011) Radiation-induced bystander effects: what are they, and how relevant are they to human radiation exposures? Radiat Res 176:139–157

    Article  CAS  PubMed  Google Scholar 

  61. Tapio S, Jacob V (2007) Radioadaptive response revisited. Radiat Environ Biophys 46:1–12

    Article  CAS  PubMed  Google Scholar 

  62. Portess DI, Bauer G, Hill MA et al (2007) Low-dose irradiation of nontransformed cells stimulates the selective removal of precancerous cells via intercellular induction of apoptosis. Cancer Res 67:1246–1253

    Article  CAS  PubMed  Google Scholar 

  63. Bauer G (2007) Low dose radiation and intercellular induction of apoptosis: potential implications for the control of oncogenesis. Int J Radiat Biol 83:873–888

    Article  CAS  PubMed  Google Scholar 

  64. Demaria S, Ng B, Devitt ML et al (2004) Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys 58:862–870

    Article  PubMed  Google Scholar 

  65. Sakai K, Nomura T, Ina Y (2006) Enhancement of bio-protection functions by low dose/dose-rate radiation. Dose Response 4:327–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sakai K, Hoshi Y, Nomura T et al (2003) Suppression of carcinogenic processes in mice by chronic low dose-rate gamma-irradiation. Int J Low Radiat 1:142–146

    Article  Google Scholar 

  67. Hotchkiss RS, Strasser A, McDunn JE et al (2009) Cell death. NEJM 361:1570–1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Scott BR (2005) Stochastic thresholds: a novel explanation of nonlinear dose-response relationships for stochastic radiobiological effects. Dose Response 3:547–567

    Article  CAS  Google Scholar 

  69. Feinendegen LE, Pollycove M, Neumann RD (2010) Low-dose cancer risk modeling must recognize up-regulation of protection. Dose Response 8:227–252

    Article  CAS  Google Scholar 

  70. Elmore E, Lao X-Y, Kapadia R et al (2008) Low doses of very low-dose-rat low LET radiation suppress radiation-induced neoplastic transformation in vitro and induce an adaptive response. Radiat Res 169:311–318

    Article  CAS  PubMed  Google Scholar 

  71. Duport P (2012) Database of radiogenic cancer in experimental animals exposed to low doses of ionizing radiation. J Toxicol Environ Health B Crit Rev 15:186–209

    Article  CAS  PubMed  Google Scholar 

  72. Upton AC (2001) Radiation hormesis: data and interpretations. Crit Rev Toxicol 31:681–695

    Article  CAS  PubMed  Google Scholar 

  73. Duport P (2003) A database of cancer induction by low dose radiation in mammals: overview and initial observations. Int J Low Radiat 1:120–131

    Article  Google Scholar 

  74. Tanooka H (2001) Threshold dose-response in radiation carcinogenesis: an approach from chronic beta-irradiation experiments and a review of non-tumor doses. Int J Radiat Biol 77:541–551

    Article  CAS  PubMed  Google Scholar 

  75. Tokarskaya ZB, Okladnikova ND, Belyaeva ZD et al (1997) Multifactorial analysis of lung cancer dose-response relationships for workers at the Mayak nuclear enterprise. Health Phys 73:899–905

    Article  CAS  PubMed  Google Scholar 

  76. Sanders CL, Lundgren D (1995) Pulmonary carcinogenesis in the F344 and Wistar rat following inhalation of 239PuO2. Radiat Res 144:206–214

    Article  CAS  PubMed  Google Scholar 

  77. Sanders CL (2008) Prevention of cigarette smoke induced lung cancer by low LET ionizing radiation. Nucl Eng Technol 40:539–550

    Article  CAS  Google Scholar 

  78. Manzon RG, Mihok S, Helson JE (2005) Hormetic effects of gamma radiation on the stress axis of natural populations of meadow voles (Microtus Pennsylvanicus) Rudy Boonstra. Environ Toxicol Chem 24:334–343

    Article  PubMed  Google Scholar 

  79. Thompson RC (1989) Life-span effects of ionizing radiation in the beagle dog: a summary account of research funded by the U.S. Department of Energy and its predecessor agencies. Pacific Northwest Laboratory, Richland. PNL-6822

    Google Scholar 

  80. Muggenberg BA, Guilmette RA, Hahn FF et al (2008) Radiotoxicity of inhaled 239PuO2 in dogs. Radiat Res 170:736–757

    Article  Google Scholar 

  81. Brooks AL (2013) Thirty-sixth Lauriston S Taylor lecture on radiation protection and measurements-from the field to the laboratory and back: the what ifs, wows, and who cares of radiation biology. Health Phys 105:407–421

    Article  CAS  PubMed  Google Scholar 

  82. White RG, Raabe OG, Culbertson MR et al (1993) Bone sarcoma characteristics and distribution in beagles fed strontium-90. Radiat Res 136:178–189

    Article  CAS  PubMed  Google Scholar 

  83. Raabe OG (2010) Concerning the health effects of internally deposited radionuclides. Health Phys 98:515–536

    Article  CAS  PubMed  Google Scholar 

  84. Fliedner TM, Graessle D, Meineke V et al (2012) Hemopoietic response to low dose-rates of ionizing radiation shows stem cell tolerance and adaptation. Dose Response 10:644–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gridley DS, Williams JR, Slater JM (2005) Low-dose/low-dose-rate radiation: a feasible strategy to improve cancer radiotherapy? Review article. Cancer Therapy 3:105–130

    Google Scholar 

  86. Leonard BE (2007) Thresholds and transitions for activation of cellular radioprotective mechanisms-correlations between HRS/IRR and the ‘inverse’ dose-rate effect. Int J Radiat Biol 83:479–489

    Article  CAS  PubMed  Google Scholar 

  87. Keirim-Markus IB (2002) Radiation exposure normalization taking account of specific effects at low doses and dose rates. At Energy 93:836–844

    Article  CAS  Google Scholar 

  88. Executive Summary 2009 Evaluation of updated research on the health effects and risks associated with low-dose ionizing radiation. EPRI Technical Report No 1019227

    Google Scholar 

  89. Vrijheid M, Cardis E, Blettner M et al (2007) The 15-country collaborative study of cancer risk among radiation workers in the nuclear industry: design, epidemiological methods and descriptive results. Radiat Res 167:361–379

    Article  CAS  PubMed  Google Scholar 

  90. Laurier D, Richardson DB, Cardis E et al (2017) The international nuclear workers study (inworks): a collaborative epidemiological study to improve knowledge about health effects of protracted low-dose exposure. Radiat Prot Dosim 173:21–25. doi:10.1093/rpd/ncw314

    Article  Google Scholar 

  91. Luckey TD (2008) Radiation hormesis overview. RSO Mag 8:22–39

    Google Scholar 

  92. Jordan BR (2016) The Hiroshima/Nagasaki studies: discrepancies between results and general perceptions. Genetics 203:1505–1512

    Article  PubMed  PubMed Central  Google Scholar 

  93. Preidt R. 2016. Effects of atom bomb not as bad as feared: study. WebMD News from HealthDay. http://www.webmd.com/cancer/news/20160811/long-term-health-effects-of-atom-bomb-on-japan-not-as-bad-as-feared-study

  94. http://www.worldlifeexpectancy.com/japan-life-expectancy

  95. https://en.wikipedia.org/wiki/List_of_countries_by_life_expectancy

  96. Schull W (2003) The children of atomic bomb survivors: a synopsis. J Radiol Prot 23:369–384

    Article  PubMed  Google Scholar 

  97. Muckerheide J. (1995). The health effects of low-level radiation: science, data, and corrective action. Nuclear News, 38 Sept, 26–30.

    Google Scholar 

  98. Cameron JR (2003) Longevity is the most appropriate measure of health effects of radiation. Radiol 229:14–15

    Article  Google Scholar 

  99. Chang WP, Chan CC, Wang JD (1997) 60-Co contamination in recycled steel resulting in elevated civilian radiation doses: causes and challenges. Health Phys 73:465–472

    Article  CAS  PubMed  Google Scholar 

  100. Chen WL, Luan YC, Shieh MC et al (2004) Is chronic radiation an effective prophylaxis against cancer? J Am Phys Surg 9:6–10

    Google Scholar 

  101. Hwang SL, Guo HR, Hsieh WA et al (2006) Cancer risks in a population with prolonged low dose-rate γ-radiation exposure in radio-contaminated buildings, 1983-2002. Int J Radiat Biol 82:849–858

    Article  CAS  PubMed  Google Scholar 

  102. Gregoire O, Cleland MR (2006) Novel approach to analyzing the carcinogenic effect of ionizing radiation. Int J Radiat Biol 82:13–19

    Article  CAS  PubMed  Google Scholar 

  103. Cuttler JM, Pollycove M (2009) Nuclear energy and health. Dose Response 7:52–89

    Article  CAS  PubMed  Google Scholar 

  104. Campsi J (2000) Aging, chromatin, and food restriction—connecting the dots. Science 289:2062–2063

    Article  Google Scholar 

  105. Mitchel REJ (2007) Cancer and low dose responses in vivo: implications for radiation protection. Dose-Response 5:284–293

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Luckey TD (2007) Documented optimum and threshold for ionizing radiation. Int J Nuclear Law 1:378–409

    Article  Google Scholar 

  107. Luckey TD (2008) The health effects of low-dose ionizing radiation. J Am Phys Surg 13:39–42

    Google Scholar 

  108. Higson DJ, Cuttler JM (2015) INEA statement on radiation and health. A proposal to replace the linear no-threshold assumption for assessing risks from ionizing radiation

    Google Scholar 

  109. Cuttler JM (2013) Commentary on Fusushima and beneficial effects of low radiation. Dose Response 11:432–443

    Article  PubMed  Google Scholar 

  110. Rossi HH, Zaider M (1997) Radiogenic lung cancer: the effects of low doses of low linear energy transfer (LET) radiation. Radiat Environ Biophys 36:85–88

    Article  CAS  PubMed  Google Scholar 

  111. Zeeb H, Hammer GP, Langner T et al (2010) Cancer mortality among German aircrew: second follow-up. Radiat Environ Biophys 49:187–194

    Article  PubMed  Google Scholar 

  112. Ainsbury EA, Bouffler SD, Dörr W et al (2009) Radiation Cataractogenesis: a review of recent studies. Radiat Res 172:1–9

    Article  CAS  PubMed  Google Scholar 

  113. Little MP (2013) A review of non-cancer effects, especially circulatory and ocular diseases. Radiat Environ Biophys 52(4):435–439

    Article  PubMed  PubMed Central  Google Scholar 

  114. Tubiana M, Diallo I, Chavaudra J et al (2011) A new method of assessing the dose-carcinogenic effect relationship in patients exposed to ionizing radiation. A concise presentation of preliminary data. Health Phys 100:296

    Article  CAS  PubMed  Google Scholar 

  115. Mitchel REJ (2007) Low doses of radiation reduce risk in vivo. Dose Response 5:1–10

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sanders, C.L. (2017). Thresholds. In: Radiobiology and Radiation Hormesis . Springer, Cham. https://doi.org/10.1007/978-3-319-56372-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56372-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56371-8

  • Online ISBN: 978-3-319-56372-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics