Skip to main content

The Predictive Power of Ecological Niche Modeling for Global Arbuscular Mycorrhizal Fungal Biogeography

  • Chapter
  • First Online:
Biogeography of Mycorrhizal Symbiosis

Part of the book series: Ecological Studies ((ECOLSTUD,volume 230))

Abstract

The distributions of arbuscular mycorrhizal (AM) fungal communities are driven by climate, soil nutrients, and plant community composition. However, these distributions are estimated at the community level and AM fungal taxa will respond to selection pressure of global change at the species level. Thus, ecological niche models of individual AM fungal taxa may be an informative approach to predict AM fungal composition and function under future climates at the global scale. Here we present the first attempt to model AM fungal distributions with ecological niche models for the widespread AM fungal taxon Rhizophagus irregularis (formerly Glomus intraradices). We show that despite varying the definition of the operational taxonomic unit (OTU) for R. irregularis, the predicted distributions of this species complex are consistently affected by a positive association with soil moisture. The spatial extent of ecological niche models affected the predicted distribution of R. irregularis, with climatic drivers and resources affecting its distribution more strongly in the northern and southern hemispheres, respectively. Given that AM fungi are not dispersal limited and coexist at the landscape scale relevant for ecological niche model predictions, this widely distributed fungal clade provides a robust case study to apply hypothesis-driven distributional models to predict the biogeography of microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antunes PM, Koch AM, Morton JB, Rillig MC, Klironomos JN (2010) Evidence for functional divergence in arbuscular mycorrhizal fungi from contrasting climatic origins. New Phytol 189:507–514

    Article  PubMed  Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Article  Google Scholar 

  • Bakkenes M, Alkemade JRM, Ihle F, Leemans R, Latour JB (2002) Assessing effects of forecasted climate change on the diversity and distribution of European higher plants for 2050. Glob Change Biol 8:390–407

    Article  Google Scholar 

  • Baptista-Rosas RC, Hinojosa A, Riquelme M (2007) Ecological niche modeling of Coccidioides spp. in Western North American deserts. Ann N Y Acad Sci 1111:35–46

    Article  PubMed  Google Scholar 

  • Börstler B, Raab PA, Thiéry O, Morton JB, Redecker D (2008) Genetic diversity of the arbuscular mycorrhizal fungus Glomus intraradices as determined by mitochondrial large subunit rRNA gene sequences is considerably higher than previously expected. New Phytol 180:452–465

    Article  PubMed  Google Scholar 

  • Bruns TD, Taylor JW (2016) Comment on “global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism”. Science 351:826

    Article  CAS  PubMed  Google Scholar 

  • Brzostek ER, Fisher JB, Phillips RP (2014) Modeling the carbon cost of plant nitrogen acquisition: mycorrhizal trade-offs and multipath resistance uptake improve predictions of retranslocation. J Geophys Res-Biogeo 119:1684–1697

    Article  Google Scholar 

  • Bueno de Mesquita CP, King AJ, Schmidt SK, Farrer EC, Suding KN (2015) Incorporating biotic factors in species distribution modeling: are interactions with soil microbes important? Ecography 39:970–980

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2004) Multimodel inference: understanding AIC and BIC in model selection. Sociol Methods Res 33:261–304

    Article  Google Scholar 

  • Calabrese JM, Certain G, Kraan C, Dormann CF (2014) Stacking species distribution models and adjusting bias by linking them to macroecological models. Glob Ecol Biogeogr 23:99–112

    Article  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chagnon PL, Bradley RL, Maherali H, Klironomos JN (2013) A trait-based framework to understand life history of mycorrhizal fungi. Trends Plant Sci 18:484–491

    Article  CAS  PubMed  Google Scholar 

  • Condit R, Engelbrecht BMJ, Pino D, Pérez R, Turner BL (2013) Species distributions in response to individual soil nutrients and seasonal drought across a community of tropical trees. Proc Natl Acad Sci U S A 110:5064–5068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davison J, Moora M, Öpik M, Adholeya A, Ainsaar L, Bâ A et al (2015) Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349:970–973

    Article  CAS  PubMed  Google Scholar 

  • Elton CS (1927) Animal ecology. The Macmillan, New York

    Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49

    Article  Google Scholar 

  • Foley JA, Prentice IC, Ramankutty N, Levis S, Pollard D, Sitch S et al (1996) An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochem Cycles 10:603–628

    Article  CAS  Google Scholar 

  • Grinnell J (1917) The niche-relationships of the California thrasher. Auk 34:427–433

    Article  Google Scholar 

  • Hanley JA, McNeil BJ (1982) The meaning and use of the area under the receiver operating characteristic (ROC) curve. Radiology 143:29–36

    Article  CAS  PubMed  Google Scholar 

  • Hawkes CV, Hartley IP, Ineson P, Fitter AH (2008) Soil temperature affects carbon allocation within arbuscular mycorrhizal networks and carbon transport from plant to fungus. Glob Change Biol 14:1181–1190

    Article  Google Scholar 

  • Heinemeyer A, Ineson P, Ostle N, Fitter A (2006) Respiration of the external mycelium in the arbuscular mycorrhizal symbiosis shows strong dependence on recent photosynthates and acclimation to temperature. New Phytol 171:159–170

    Article  CAS  PubMed  Google Scholar 

  • Hengl T, de Jesus JM, MacMillan RA, Batjes NH, Heuvelink GBM, Ribeiro E et al (2014) SoilGrids1km? Global soil information based on automated mapping. PLoS One 9:e105992

    Article  PubMed  PubMed Central  Google Scholar 

  • Hijmans RJ, Elith J (2012) Species distribution modeling with R. http://cran.r-project.org/web/packages/dismo/vignettes/dm.pdf

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Johnson NC, Wilson GWT, Bowker MA, Wilson JA, Miller RM (2010) Resource limitation is a driver of local adaptation in mycorrhizal symbioses. Proc Natl Acad Sci U S A 107:2093–2098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson NC, Angelard C, Sanders IR, Kiers ET (2013) Predicting community and ecosystem outcomes of mycorrhizal responses to global change. Ecol Lett 16:140–153

    Article  PubMed  Google Scholar 

  • Katoh K, Misawa K, Kuma KI, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kivlin SN, Hawkes CV, Treseder KK (2011) Global diversity and distribution of arbuscular mycorrhizal fungi. Soil Biol Biochem 43:2294–2303

    Article  CAS  Google Scholar 

  • Kivlin SN, Emery SM, Rudgers JA (2013) Fungal symbionts alter plant responses to global change. Am J Bot 100:1445–1457

    Article  PubMed  Google Scholar 

  • Kivlin SN, Winston GC, Goulden ML, Treseder KK (2014) Environmental filtering affects soil fungal community composition more than dispersal limitation at regional scales. Fungal Ecol 12:14–25

    Article  Google Scholar 

  • MacArthur RH (1972) Geographical ecology: patterns in the distribution of species. Princeton University Press, Princeton

    Google Scholar 

  • Maherali H, Klironomos JN (2007) Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316:1746–1748

    Article  CAS  PubMed  Google Scholar 

  • Maherali H, Klironomos JN (2012) Phylogenetic and trait-based assembly of arbuscular mycorrhizal fungal communities. PLoS One 7:e36695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merow C, Smith MJ, Silander JA (2013) A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36:1058–1069

    Article  Google Scholar 

  • Merow C, Latimer AM, Wilson AM, McMahon SM, Rebelo AG, Silander JA (2014) On using integral projection models to generate demographically driven predictions of species’ distributions: development and validation using sparse data. Ecography 37:1167–1183

    Article  Google Scholar 

  • Mirarab S, Nguyen N, Guo S, Wang L-S, Kim J, Warnow T (2015) PASTA: ultra-large multiple sequence alignment for nucleotide and amino-acid sequences. J Comput Biol 22:377–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohan JE, Cowden CC, Baas P, Dawadi A, Frankson PT, Helmick K et al (2014) Mycorrhizal fungi mediation of terrestrial ecosystem responses to global change: mini-review. Fungal Ecol 10:3–19

    Article  Google Scholar 

  • Muscarella R, Galante PJ, Soley-Guardia M, Boria RA, Kass JM, Uriarte M et al (2014) ENMeval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol Evol 5:1198–1205

    Article  Google Scholar 

  • Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM et al (2010) The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188:233–241

    Article  Google Scholar 

  • Öpik M, Zobel M, Cantero J, Davison J, Facelli J, Hiiesalu I et al (2013) Global sampling of plant roots expands the described molecular diversity of arbuscular mycorrhizal fungi. Mycorrhiza 23:411–430

    Article  PubMed  Google Scholar 

  • Öpik M, Davison J, Moora M, Partel M, Zobel M (2016) Response to comment on “global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism”. Science 351:826

    Article  PubMed  Google Scholar 

  • Parmesan C, Root T, Willig M (2000) Impacts of extreme weather and climate on terrestrial biota. B Am Meteorol Soc 81:443–450

    Article  Google Scholar 

  • Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12:361–371

    Article  Google Scholar 

  • Pellissier L, Pinto-Figueroa E, Niculita-Hirzel H, Moora M, Villard L, Goudet J et al (2013) Plant species distributions along environmental gradients: do belowground interactions with fungi matter? Front Plant Sci 4:1–9

    Article  Google Scholar 

  • Peterson AT (2003) Predicting the geography of species’ invasions via ecological niche modeling. Q Rev Biol 78:419–433

    Article  PubMed  Google Scholar 

  • Peterson AT, Ortega-Huerta MA, Bartley J, Sanchez-Cordero V, Soberon J, Buddemeier RH et al (2002) Future projections for Mexican faunas under global climate change scenarios. Nature 416:626–629

    Article  CAS  PubMed  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Plotkin JB, Muller-Landau HC (2002) Sampling the species composition of a landscape. Ecology 83:3344–3356

    Article  Google Scholar 

  • Powell JR, Parrent JL, Hart MM, Klironomos JN, Rillig MC, Maherali H (2009) Phylogenetic trait conservatism and the evolution of functional trade-offs in arbuscular mycorrhizal fungi. Proc R Soc B 276:4237–4245

    Article  PubMed  PubMed Central  Google Scholar 

  • R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Raxworthy CJ, Ingram CM, Rabibisoa N, Pearson RG (2007) Applications of ecological niche modeling for species delimitation: a review and empirical evaluation using day geckos (Phelsuma) from Madagascar. Syst Biol 56:907–923

    Article  PubMed  Google Scholar 

  • Reed KD, Meece JK, Archer JR, Peterson AT (2008) Ecologic niche modeling of Blastomyces dermatitidis in Wisconsin. PLoS One 3:e2034

    Article  PubMed  PubMed Central  Google Scholar 

  • Ricklefs RE, He F (2016) Region effects influence local tree species diversity. Proc Natl Acad Sci U S A 113:674–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rúa MA, Antoninka A, Antunes PM, Chaudhary VB, Gehring C, Lamit LJ et al (2016) Home-field advantage? evidence of local adaptation among plants, soil, and arbuscular mycorrhizal fungi through meta-analysis. BMC Evol Biol 16:122

    Article  PubMed  PubMed Central  Google Scholar 

  • Schenck NC, Smith GS (1982) Responses of six species of vesicular-arbuscular mycorrhizal fungi and their effects on soybean at four soil temperatures. New Phytol 92:193–201

    Article  Google Scholar 

  • Sikes BA, Powell JR, Rillig MC (2010) Deciphering the relative contributions of multiple functions within plant-microbe symbioses. Ecology 91:1591–1597

    Article  PubMed  Google Scholar 

  • Sinclair SJ, White MD, Newell GR (2010) How useful are species distribution models for managing biodiversity under future climates? Ecol Soc 15:8

    Article  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, New York

    Google Scholar 

  • Soberón J (2007) Grinnellian and Eltonian niches and geographic distributions of species. Ecol Lett 10:1115–1123

    Article  PubMed  Google Scholar 

  • Soudzilovskaia NA, Douma JC, Akhmetzhanova AA, van Bodegom PM, Cornwell WK, Moens EJ et al (2015a) Global patterns of plant root colonization intensity by mycorrhizal fungi explained by climate and soil chemistry. Glob Ecol Biogeogr 24:371–382

    Article  Google Scholar 

  • Soudzilovskaia NA, van der Heijden MGA, Cornelissen JHC, Makarov MI, Onipchenko VG, Maslov MN et al (2015b) Quantitative assessment of the differential impacts of arbuscular and ectomycorrhiza on soil carbon cycling. New Phytol 208:280–293

    Article  CAS  PubMed  Google Scholar 

  • Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R et al (2014) Global diversity and geography of soil fungi. Science 346

    Google Scholar 

  • Thuiller W, Pollock LJ, Gueguen M, Münkemüller T (2015) From species distributions to meta-communities. Ecol Lett 18:1321–1328

    Article  PubMed  PubMed Central  Google Scholar 

  • Treseder KK (2004) A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol 164:347–355

    Article  Google Scholar 

  • Treseder KK (2016) Model behavior of arbuscular mycorrhizal fungi: predicting soil carbon dynamics under climate change. Botany 94:417–423

    Article  CAS  Google Scholar 

  • van der Heijden MGA, Boller T, Wiemken A, Sanders IR (1998a) Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology 79:2082–2091

    Article  Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T et al (1998b) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  Google Scholar 

  • Vellend M (2010) Conceptual synthesis in community ecology. Q Rev Biol 85:183–206

    Article  PubMed  Google Scholar 

  • Venette RC, Kriticos DJ, Magarey RD, Koch FH, Baker RHA, Worner SP et al (2010) Pest risk maps for invasive alien species: a roadmap for improvement. Bioscience 60:349–362

    Article  Google Scholar 

  • Vitousek P, Howarth R (1991) Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13:87–115

    Article  Google Scholar 

  • Willmott CJ, Rowe CM, Mintz Y (1985) Climatology of the terrestrial seasonal water cycle. J Climatol 5:589–606

    Article  Google Scholar 

  • Wisz MS, Pottier J, Kissling WD, Pellissier L, Lenoir J, Damgaard CF et al (2013) The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biol Rev 88:15–30

    Article  PubMed  Google Scholar 

  • Wolda H (1981) Similarity indices, sample size and diversity. Oecologia 50:296–302

    Article  PubMed  Google Scholar 

  • Xiang D, Verbruggen E, Hu Y, Veresoglou SD, Rillig MC, Zhou W et al (2014) Land use influences arbuscular mycorrhizal fungal communities in the farming–pastoral ecotone of northern China. New Phytol 204:968–978

    Article  CAS  PubMed  Google Scholar 

  • Yackulic CB, Nichols JD, Reid J, Der R (2015) To predict the niche, model colonization and extinction. Ecology 96:16–23

    Article  Google Scholar 

  • Yang W, Zheng Y, Gao C, He X, Ding Q, Kim Y et al (2013a) The arbuscular mycorrhizal fungal community response to warming and grazing differs between soil and roots on the Qinghai-Tibetan plateau. PLoS One 8:e76447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Post WM, Thornton PE, Jain A (2013b) The distribution of soil phosphorus for global biogeochemical modeling. Biogeosciences 10:2525–2537

    Article  CAS  Google Scholar 

  • Zhang T, Yang X, Guo R, Guo J (2016) Response of AM fungi spore population to elevated temperature and nitrogen addition and their influence on the plant community composition and productivity. Sci Rep 6:24749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie N. Kivlin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kivlin, S.N., Muscarella, R., Hawkes, C.V., Treseder, K.K. (2017). The Predictive Power of Ecological Niche Modeling for Global Arbuscular Mycorrhizal Fungal Biogeography. In: Tedersoo, L. (eds) Biogeography of Mycorrhizal Symbiosis. Ecological Studies, vol 230. Springer, Cham. https://doi.org/10.1007/978-3-319-56363-3_7

Download citation

Publish with us

Policies and ethics