Biogeography of the Japanese Gourmet Fungus, Tricholoma matsutake: A Review of the Distribution and Functional Ecology of Matsutake

Part of the Ecological Studies book series (ECOLSTUD, volume 230)


Tricholoma matsutake (S. Ito & S. Imai) Singer is an ectomycorrhizal basidiomycete that produces highly prized mushrooms known as ‘true matsutake’. Recent research has shown that T. matsutake has a wide but patchy distribution in temperate and boreal forests of Eurasia and subtropical China in association with Pinus, Picea, Tsuga, Abies and even fagaceous broadleaves. Molecular analyses of the microbial communities living in shiro soil have been made in certain locations, but their generality has yet to be determined systematically and across the entire range. Variation in fruiting in relation to climate and geography has improved our understanding of matsutake phenology, and important in-roads have been made into its ecology over the past 15 years. T. matsutake is a commercially-important fungal species that plays a significant role in the functional diversity of forests in the Northern Hemisphere, but much remains to be learned about this enigmatic taxon.


Ectomycorrhizal fungus Distribution Diversity Fruiting pattern Functional ecology Host specificity Microbial community Tricholoma matsutake 



We apologize to all our colleagues whose work could not be cited here because of space limitations. We thank Michael Hardman for revising the English.


  1. Agerer R (1987–1998) Colour atlas of ectomycorrhizae vol 1st–11th del. Einhorn-Verlag, MunichGoogle Scholar
  2. Amann RI, Luowid W, Schleifer K-H (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169PubMedPubMedCentralGoogle Scholar
  3. Amaranthus MP, Pilz D, Moore A, Abbott R, Luoma D (2000) American matsutake (Tricholoma magnivelare) across spatial and temporal scales. General Technical Report—Pacific Southwest Research Station, USDA Forest Service (No. PSW-GTR-178), pp 99–108Google Scholar
  4. Amend A, Garbelotto M, Fang ZD, Keeley S (2010) Isolation by landscape in populations of a prized edible mushroom Tricholoma matsutake. Conserv Genet 11:795–802CrossRefGoogle Scholar
  5. Antony-Babu S, Deveau A, Van Nostrand JD, Zhou J, Le Tacon F, Robin C, Frey-Klett P, Uroz S (2014) Black truffle-associated bacterial communities during the development and maturation of Tuber melanosporum ascocarps and putative functional roles. Environ Microbiol 16:2831–2847PubMedCrossRefGoogle Scholar
  6. Bergius N, Danell E (2000) The Swedish matsutake (Tricholoma nauseosum syn. T. matsutake): distribution, abundance and ecology. Scand J For Res 15:318–325CrossRefGoogle Scholar
  7. Bessette A, Bessette A, Roody W, Trudell S (2013) Tricholomas of North America: a mushroom field guide. University of Texas Press, AustinGoogle Scholar
  8. Bon M (1991) Flore mycologique d’Europe 2. Les tricholomes et ressemblants. Tricholomataceae (Fayod) Heim (lere partie)Tricholomoideae et Leucopaxilloideae genres Tricholoma, Tricholomopsis, Callistosporium, Porpoloma, Floccularia, Leucopaxillus et Melanoleuca. Documents mycologiques, Memoire hors serie no 2. Association decologie et de mycologie, U.E.R. pharmacie, LilleGoogle Scholar
  9. Bryla DR, Koide RT (1990) Regulation of reproduction in wild and cultivated Lycopersicon esculentum mill by vesicular arbuscular mycorrhizal infection. Oecologia 84:74–81PubMedCrossRefGoogle Scholar
  10. Buée M, Vairelles D, Garbaye J (2005) Year-round monitoring of diversity and potential metabolic activity of the ectomycorrhizal community in a beech (Fagus silvatica) forest subjected to two thinning regimes. Mycorrhiza 15:235–245PubMedCrossRefGoogle Scholar
  11. Buntgen U, Peter M, Kauserud H, Egli S (2013) Unraveling environmental drivers of a recent increase in Swiss fungi fruiting. Glob Chang Biol 19:2785–2794PubMedCrossRefGoogle Scholar
  12. Buntgen U, Egli S, Galvan JD, Diez JM, Aldea J, Latorre J, Martinez-Pena F (2015) Drought-induced changes in the phenology, productivity and diversity of Spanish fungi. Fungal Ecol 16:6–18CrossRefGoogle Scholar
  13. Cairney J, Chambers S (1999) Ectomycorrhizal fungi key genera in profile. Springer-Verlag, BerlinCrossRefGoogle Scholar
  14. Chapela IH, Garbelotto M (2004) Phylogeography and evolution in matsutake and close allies inferred by analyses of ITS sequences and AFLPs. Mycologia 96:730–741PubMedCrossRefGoogle Scholar
  15. Chen G-L, Zhou D-Q, Yang Y-P, Yang X-F (2011) Fruiting pattern of Tricholoma matsutake and its relationship with meteorological factors in Yunnan, China. Plant Divers Resour 33:547–555Google Scholar
  16. Christensen M, Heilmann-Clausen J (2013) The genus ‘Tricholoma’. Danish Mycological Societies, HornbakGoogle Scholar
  17. Courty PE, Labbe J, Kohler A, Marcais B, Bastien C, Churin JL, Garbaye J, Le Tacon F (2011) Effect of poplar genotypes on mycorrhizal infection and secreted enzyme activities in mycorrhizal and non-mycorrhizal roots. J Exp Bot 62:249–260PubMedCrossRefGoogle Scholar
  18. Cullings K, Courty PE (2009) Saprotrophic capabilities as functional traits to study functional diversity and resilience of ectomycorrhizal community. Oecologia 161:661–664PubMedCrossRefGoogle Scholar
  19. Deacon J, Fleming L (1992) Interactions of ectomycorrhizal fungi. In: Allen MF (ed) Mycorrhiza functioning: an integrative plant process. Chapman & Hall, New York, pp 249–300Google Scholar
  20. Endo N, Dokmai P, Suwannasai N, Phosri C, Horimai Y, Hirai N, Fukuda M, Yamada A (2015) Ectomycorrhization of Tricholoma matsutake with Abies veitchii and Tsuga diversifolia in the subalpine forests of Japan. Mycoscience 56:402–412CrossRefGoogle Scholar
  21. Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36PubMedCrossRefGoogle Scholar
  22. Furukawa H, Masuno K, Takeuchi Y (2016) Forest management of matsutake productive sites for the optimization to global warming. Annual reports of the Nagano Prefecture Forestry Research Center 30:87–100Google Scholar
  23. Gange AC, Gange EG, Sparks TH, Boddy L (2007) Rapid and recent changes in fungal fruiting patterns. Science 316:71–71PubMedCrossRefGoogle Scholar
  24. Gill WM, Guerin-Laguette A, Lapeyrie F, Suzuki K (2000) Matsutake—morphological evidence of ectomycorrhiza formation between Tricholoma matsutake and host roots in a pure Pinus densiflora forest stand. New Phytol 147:381–388CrossRefGoogle Scholar
  25. Gong M, Chen Y, Wang F, Chen Y (1999) Song Rong (Tricholoma matsutake). Yunnan Science and Technology Publishing House, KunmingGoogle Scholar
  26. Grayston SJ, Vaughan D, Jones D (1997) Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl Soil Ecol 5:29–56CrossRefGoogle Scholar
  27. Guerin-Laguette A, Matsushita N, Kikuchi K, Iwase K, Lapeyrie F, Suzuki K (2002) Identification of a prevalent Tricholoma matsutake ribotype in Japan by rDNA IGS1 spacer characterization. Mycol Res 106:435–443CrossRefGoogle Scholar
  28. Guerin-Laguette A, Shindo K, Matsushita N, Suzuki K, Lapeyrie F (2004) The mycorrhizal fungus Tricholoma matsutake stimulates Pinus densiflora seedling growth in vitro. Mycorrhiza 14:397–400PubMedCrossRefGoogle Scholar
  29. Guerin-Laguette A, Matsushita N, Lapeyrie F, Shindo K, Suzuki K (2005) Successful inoculation of mature pine with Tricholoma matsutake. Mycorrhiza 15:301–305PubMedCrossRefGoogle Scholar
  30. Hall IR, Yun W, Amicucci A (2003) Cultivation of edible ectomycorrhizal mushrooms. Trends Biotechnol 21:433–438PubMedCrossRefGoogle Scholar
  31. Hamada M (1953) Matsutake. Shizen 8:56–64Google Scholar
  32. Hamada M (1964) General introduction to Tricholoma matsutake (in Japanese). In: The Matsutake Research Association (ed) Matsutake (Tricholoma matsutake Singer)—its fundamental studies and economic production of the fruit-body, vol 6. The Matsutake Research AssociationGoogle Scholar
  33. Hasebe K, Ohira I, Arita I (1998) Genetic relationship between high-, medium-, and low-temperature-type fruiting of Lentinula edodes in wood log culture, vol 36, Tottori Mycological InstituteGoogle Scholar
  34. Hosford D, Pilz D, Molina R, Amaranthus M (1997) Ecology and management of the commercially harvested American matsutake. General Technical Report (GTR) PNW-GTR-412. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, ORGoogle Scholar
  35. Hur T-C, Ka K-H, Joo S-H, Terashita T (2001) Characteristics of the amylase and its related enzymes produced by ectomycorrhizal fungus Tricholoma matsutake. Mycobiology 29:183–189Google Scholar
  36. Intini M, Doğan HH, Riva A (2003) Tricholoma anatolicum spec. Nov.: a new member of the matsutake group. Micol Veget Medit 18:135–142Google Scholar
  37. Jiang H, He CG, Yu FQ, Liu PG, Zhao WQ (2015) Bacterial diversity cultured from shiros of Tricholoma matsutake. Chinese J Ecol 34:150–156Google Scholar
  38. Ka K, Park H, Hur T, Bak W (2008) Selection of Ectomycorrhizal Iiolates of Tricholoma matsutake and T. magnivelare for inoculation on seedlings of Pinus densiflora in vitro. Korean J Mycol 36:148–152CrossRefGoogle Scholar
  39. Kataoka R, Siddiqui ZA, Kikuchi J, Ando M, Sriwati R, Nozaki A, Futai K (2012) Detecting nonculturable bacteria in the active mycorrhizal zone of the pine mushroom Tricholoma matsutake. J Microbiol 50:199–206PubMedCrossRefGoogle Scholar
  40. Kauserud H, Heegaard E, Semenov MA, Boddy L, Halvorsen R, Stige LC, Sparks TH, Gange AC, Stenseth NC (2010) Climate change and spring-fruiting fungi. Proc R Soc B Biol Sci 277:1169–1177CrossRefGoogle Scholar
  41. Kiikkilä O, Kitunen V, Smolander A (2011) Properties of dissolved organic matter derived from silver birch and Norway spruce stands: degradability combined with chemical characteristics. Soil Biol Biochem 43:421–430CrossRefGoogle Scholar
  42. Kim M, Yoon H, You YH, Kim YE, Woo JR, Seo Y, Lee GM, Kim YJ, Kong WS, Kim JG (2013) Metagenomic analysis of fungal communities inhabiting the fairy ring zone of Tricholoma matsutake. J Microbiol Biotechnol 23:1347–1356PubMedCrossRefGoogle Scholar
  43. Kim M, Yoon H, Kim YE, Kim YJ, Kong WS, Kim JG (2014) Comparative analysis of bacterial diversity and communities inhabiting the fairy ring of Tricholoma matsutake by barcoded pyrosequencing. J Appl Microbiol 117:699–710PubMedCrossRefGoogle Scholar
  44. Kinugawa K (1963) Ecological studies on the development of fruit-body in Armillaria matsutake Ito et Imai: analysis of growth curves. Bull Univ Osaka Prefect B 14:27–60Google Scholar
  45. Kobayashi H, Watahiki T, Kuramochi M, Onose K, Yamada A (2007) Production of pine seedlings with the shiro-like structure of the matsutake mushroom (Tricholoma matsutake (S. Ito et Imai) Sing.) in a large culture bottle. Mushroom Sci Biotechnol 15:151–155Google Scholar
  46. Kobayashi H, Terasaki M, Yamada A (2015) Two-year survival of Tricholoma matsutake ectomycorrhizas on Pinus densiflora seedlings after outplanting to a pine forest. Mushroom Sci Biotechnol 23:108–113Google Scholar
  47. Kretzer AM, Dunham S, Molina R, Spatafora JW (2005) Patterns of vegetative growth and gene flow in Rhizopogon vinicolor and R. vesiculosus (Boletales, Basidiomycota). Mol Ecol 14:2259–2268PubMedCrossRefGoogle Scholar
  48. Kusuda M, Ueda M, Konishi Y, Araki Y, Yamanaka K, Nakazawa M, Miyatake K, Terashita T (2006) Detection of beta-glucosidase as saprotrophic ability from an ectomycorrhizal mushroom, Tricholoma matsutake. Mycoscience 47:184–189CrossRefGoogle Scholar
  49. Kusuda M, Ueda M, Miyatake K, Terashita T (2008) Characterization of the carbohydrase productions of an ectomycorrhizal fungus, Tricholoma matsutake. Mycoscience 49:291–297CrossRefGoogle Scholar
  50. Kytövuori I (1988) The Tricholoma caligatum group in Europe and north Africa. Karstenia 28:65–78Google Scholar
  51. Li Q, Li XL, Huang WL, Xiong C, Yang Y, Yang ZR, Zheng LY (2014) Community structure and diversity of entophytic bacteria in Tricholoma matsutake in Sichuan Province, Southwest China. Ying Yong Sheng Tai Xue Bao 25:3316–3322PubMedGoogle Scholar
  52. Lian C, Narimatsu M, Nara K, Hogetsu T (2006) Tricholoma matsutake in a natural Pinus densiflora forest: correspondence between above- and below-ground genets, association with multiple host trees and alteration of existing ectomycorrhizal communities. New Phytol 171:825–836PubMedCrossRefGoogle Scholar
  53. Lindahl BD, Tunlid A (2015) Ectomycorrhizal fungi–potential organic matter decomposers, yet not saprotrophs. New Phytol 205:1443–1447PubMedCrossRefGoogle Scholar
  54. Lombard N, Prestat E, van Elsas JD, Simonet P (2011) Soil-specific limitations for access and analysis of soil microbial communities by metagenomics. FEMS Microbiol Ecol 78:31–49PubMedCrossRefGoogle Scholar
  55. Maier A, Riedlinger J, Fiedler H-P, Hampp R (2004) Actinomycetales bacteria from a spruce stand: characterization and effects on growth of root symbiotic and plant parasitic soil fungi in dual culture. Mycol Prog 3:129–136CrossRefGoogle Scholar
  56. Matsushita N, Kikuchi K, Sasaki Y, Guerin-Laguette A, Lapeyrie F, Vaario L-M, Intini M, Suzuki K (2005) Genetic relationship of Tricholoma matsutake and T. nauseosum from the northern hemisphere based on analyses of ribosomal DNA spacer regions. Mycoscience 46:90–96CrossRefGoogle Scholar
  57. Morales SE, Holben WE (2011) Linking bacterial identities and ecosystem processes: can ‘omic’ analyses be more than the sum of their parts? FEMS Microbiol Ecol 75:2–16PubMedCrossRefGoogle Scholar
  58. Mosca E, Montecchio L, Scattolin L, Garbaye J (2007) Enzymatic activities of three ectomycorrhizal types of Quercus robur L. in relation to tree decline and thinning. Soil Biol Biochem 39:2897–2904CrossRefGoogle Scholar
  59. Murata Y, Minamide T (1989) Occurrences of Tricholoma matsutake. Hokkaido Hoppo Ringyo 41:293–299Google Scholar
  60. Murata Y, Takahashi Y, Horahiro K, Adachi Y (2001) Productivity of matsutake in a natural forest of Todo-fir and environmental improvement for its occurrence. Bull Hokkaido Forestry Res Inst 38:1–22Google Scholar
  61. Murata H, Babasaki K, Saegusa T, Takemoto K, Yamada A, Ohta A (2008) Traceability of Asian Matsutake, specialty mushrooms produced by the ectomycorrhizal basidiomycete Ticholoma matsutake, on the basis of retroelement-based DNA markers. Appl Environ Microbiol 74:2023–2031PubMedPubMedCentralCrossRefGoogle Scholar
  62. Murata H, Yamada A, Maruyama T, Endo N, Yamamoto K, Ohira T, Shimokawa T (2013a) Root endophyte interaction between ectomycorrhizal basidiomycete Tricholoma matsutake and arbuscular mycorrhizal tree Cedrela odorata, allowing in vitro synthesis of rhizospheric “shiro”. Mycorrhiza 23:235–242PubMedCrossRefGoogle Scholar
  63. Murata H, Ota Y, Yamaguchi M, Yamada A, Katahata S, Otsuka Y, Babasaki K, Neda H (2013b) Mobile DNA distributions refine the phylogeny of “matsutake” mushrooms, tricholoma sect. Caligata. Mycorrhiza 23:447–461PubMedCrossRefGoogle Scholar
  64. Murata H, Yamada A, Yokota S, Maruyama T, Endo N, Yamamoto K, Ohira T, Neda H (2014a) Root endophyte symbiosis in vitro between the ectomycorrhizal basidiomycete Tricholoma matsutake and the arbuscular mycorrhizal plant Prunus speciosa. Mycorrhiza 24:315–321PubMedCrossRefGoogle Scholar
  65. Murata H, Yamada A, Maruyama T, Endo N, Yamamoto K, Hayakawa N, Neda H (2014b) In vitro shiro formation between the ectomycorrhizal basidiomycete Tricholoma matsutake and Cedrela herrerae in the mahogany family (Meliaceae). Mycoscience 55:275–279CrossRefGoogle Scholar
  66. Murata H, Ohta A, Yamada A, Horimai Y, Katahata S, Yamaguchi M, Neda H (2015a) Monokaryotic hyphae germinated from a single spore of the ectomycorrhizal basidiomycete Tricholoma matsutake. Mycoscience 56:287–292CrossRefGoogle Scholar
  67. Murata H, Yamada A, Maruyama T, Neda H (2015b) Ectomycorrhizas in vitro between Tricholoma matsutake, a basidiomycete that associates with Pinaceae, and Betula platyphylla Var. japonica, an early-successional birch species, in cool-temperate forests. Mycorrhiza 25:237–241PubMedCrossRefGoogle Scholar
  68. Murata H, Yamada A, Yamamoto K, Maruyama T, Igasaki T, Mohri T, Yamanaka T, Shimokawa T, Neda H (2016) The ectomycorrhizal basidiomycete Tricholoma matsutake associates with the root tissues of the model tree Populus tremula × tremuloides in vitro. Bull FFPRI 15:17–18Google Scholar
  69. Narimatsu M, Koiwa T, Masaki T, Sakamoto Y, Ohmori H, Tawaraya K (2015) Relationship between climate, expansion rate, and fruiting in fairy rings (‘shiro’) of an ectomycorrhizal fungus Tricholoma matsutake in a Pinus densiflora forest. Fungal Ecol 15:18–28CrossRefGoogle Scholar
  70. Nishino K, Shiro M, Oizumi K, Okura R, Fujita T, Yamaguchi M, Yamada A, Tanaka C, Sasamori T, Tokitoh N, Hirai N (2016a) The growth strategy of Tricholoma matsutake with antimicrobial (oxalato)aluminate complex. In: 127th Annual Japanese Forest Society Meeting, Kanakawa, p M4Google Scholar
  71. Nishino K, Shiro M, Okura R, Oizumi K, Fujita T, Sasamori T, Tokitoh N, Yamada A, Tanaka C, Yamaguchi M, Hiradate S, Hirai N (2016b) The (oxalato) aluminate complex as an antimicrobial substance protecting the “shiro” of Tricholoma matsutake from soil micro-organisms. Biosci Biotechnol Biochem 81:102–111PubMedCrossRefGoogle Scholar
  72. Ogawa M (1976a) Microbial ecology of ‘Shiro’ in Tricholoma matsutake (S. Ito et Imai) Sing. and its allied species. II: Tricholoma matsutake in Pinus pumila Var. yezoalpina forest. Trans Mycol Soc Jpn 17:176–187Google Scholar
  73. Ogawa M (1976b) Microbial ecology of ‘Shiro’ in Tricholoma matsutake (S. Ito et Imai) Sing. and its allied species. III: Tricholoma matsutake in Picea glehnii and Picea glehnii-Abies sachalinensis forests. Trans Mycol Soc Jpn 17:188–198Google Scholar
  74. Ogawa M (1977a) Microbial ecology of ‘Shiro’ in Tricholoma matsutake (S. Ito et Imai) Sing. and its allied species. IV: Tricholoma matsutake in Tsuga Diversifolia forests. Trans Mycol Soc Jpn 18:20–33Google Scholar
  75. Ogawa M (1977b) Microbial ecology of ‘Shiro’ in Tricholoma matsutake (S. Ito et Imai) Sing. and its allied species. V: Tricholoma matsutake in Tsuga sieboldii forests. Trans Mycol Soc Jpn 18:34–46Google Scholar
  76. Ogawa M (1978) Biology of Matsutake mushroom. Tsukiji Shokan, Tokyo, p 333Google Scholar
  77. Ohara H (1980) Bacterial population in the shiro of Tricholoma matsutake and its allied species II. Bacterial behaviour in the shiro of T. matsutake under various forest conditions. Doshisha Women’s College of Liberal Arts. Ann Rep Stud 31:240–269Google Scholar
  78. Ohara H, Hamada M (1967) Disappearance of bacteria from zone of active mycorrhizas in Tricholoma matsutake (S. Ito Et Imai) Singer. Nature 213:528–529CrossRefGoogle Scholar
  79. Okada K, Okada S, Yasue K, Fukuda M, Yamada A (2011) Six-year monitoring of pine ectomycorrhizal biomass under a temperate monsoon climate indicates significant annual fluctuations in relation to climatic factors. Ecol Res 26:411–419CrossRefGoogle Scholar
  80. Ota Y, Yamanaka T, Murata H, Neda H, Ohta A, Kawai M, Yamada A, Konno M, Tanaka C (2012) Phylogenetic relationship and species delimitation of matsutake and allied species based on multilocus phylogeny and haplotype analyses. Mycologia 104:1369–1380PubMedCrossRefGoogle Scholar
  81. Park M, Sim S, Cheon W (2007) Methods of preparing Tricholoma matsutake-infected young pine by culturing aseptic pine seedlings and T. matsutake, US726993Google Scholar
  82. Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Koppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644CrossRefGoogle Scholar
  83. Põlme S, Bahram M, Yamanaka T, Nara K, Dai YC, Grebenc T, Kraigher H, Toivonen M, Wang PH, Matsuda Y, Naadel T, Kennedy PG, Koljalg U, Tedersoo L (2013) Biogeography of ectomycorrhizal fungi associated with alders (Alnus spp.) in relation to biotic and abiotic variables at the global scale. New Phytol 198:1239–1249PubMedCrossRefGoogle Scholar
  84. Ray N, Adams JM (2001) A GIS-based vegetation map of the world at the last glacial maximum (25,000–15,000 BP). Int Archaeol 11Google Scholar
  85. Risberg L, Danell E, Dahlberg A (2004) Is Tricholoma matsutake associated with continuity of scots pine trees? (Finns goliatmusseronen enbart i tallskogar som aldrig kalavverkats?). Sven Bot Tidskr 98:317–327Google Scholar
  86. Rudnick MB, van Veen JA, de Boer W (2015) Baiting of rhizosphere bacteria with hyphae of common soil fungi reveals a diverse group of potentially mycophagous secondary consumers. Soil Biol Biochem 88:73–82CrossRefGoogle Scholar
  87. Ryman S, Bergius N, Danell E (2000) (1459) Proposal to conserve the name Armillaria matsutake against Armillaria nauseosa (fungi, Basidiomycotina, Tricholomataceae). Taxon 49:555–556CrossRefGoogle Scholar
  88. Satake Y, Hara H, Watari S, Tominari T (1989) Wild flowers of Japan: woody plants. Heibonsha, TokyoGoogle Scholar
  89. Sato H, Morimoto S, Hattori T (2012) A thirty-year survey reveals that ecosystem function of fungi predicts phenology of mushroom fruiting. PLoS One 7:e49777PubMedPubMedCentralCrossRefGoogle Scholar
  90. Schrey SD, Schellhammer M, Ecke M, Hampp R, Tarkka MT (2005) Mycorrhiza helper bacterium Streptomyces AcH 505 induces differential gene expression in the ectomycorrhizal fungus Amanita muscaria. New Phytol 168:205–216PubMedCrossRefGoogle Scholar
  91. Seipke RF, Kaltenpoth M, Hutchings MI (2012) Streptomyces as symbionts: an emerging and widespread theme? FEMS Microbiol Rev 36:862–876PubMedCrossRefGoogle Scholar
  92. Smith SE, Read D (2008) Mycorrhizal Symbiosis. In: Mycorrhizal symbiosis, 3rd edn. Academic Press, London, pp 1–787CrossRefGoogle Scholar
  93. Suzuki K (2005) Ectomycorrhizal ecophysiology and the puzzle of Tricholoma matsutake. J Jpn For Soc 87:90–102CrossRefGoogle Scholar
  94. Tagu D, Bastien C, Faivre-Rampant P, Garbaye J, Vion P, Villar M, Martin F (2005) Genetic analysis of phenotypic variation for ectomycorrhiza formation in an interspecific F1 poplar full-sib family. Mycorrhiza 15:87–91PubMedCrossRefGoogle Scholar
  95. Talbot J, Allison S, Treseder K (2008) Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. Funct Ecol 22:955–963CrossRefGoogle Scholar
  96. Tarkka MT, Lehr N-A, Hampp R, Schrey SD (2008) Plant behavior upon contact with Streptomycetes. Plant Signal Behav 3:917–919PubMedPubMedCentralCrossRefGoogle Scholar
  97. Taylor AFS, Alexander I (2005) The ectomycorrhizal symbiosis: life in the real world. Mycologist 19:102–112CrossRefGoogle Scholar
  98. Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, Ruiz LV, Vasco-Palacios AM, Thu PQ, Suija A (2014) Global diversity and geography of soil fungi. Science 346:1256688PubMedCrossRefGoogle Scholar
  99. Terashita T, Kono M, Yoshikawa K, Shishiyama J (1995) Productivity of hydrolytic enzymes by mycorrhizal mushrooms. Mycoscience 36(2):221–225CrossRefGoogle Scholar
  100. The Global Fungal Red List Initiative (2015) Tricholoma matsutake (S. Ito & S. Imai) Singer.
  101. The Matsutake Research Association (1964) Matsutake (Tricholoma matsutake Singer)—its fundamental studies and economic production of the fruitbody. The Matsutake Research Association, KyotoGoogle Scholar
  102. Vaario LM, Guerin-Laguette A, Matsushita N, Suzuki K, Lapeyrie F (2002) Saprobic potential of Tricholoma matsutake: growth over pine bark treated with surfactants. Mycorrhiza 12:1–5PubMedCrossRefGoogle Scholar
  103. Vaario LM, Pennanen T, Sarjala T, Savonen E-M, Heinonsalo J (2010) Ectomycorrhization of Tricholoma matsutake and two major conifers in Finland-an assessment of in vitro mycorrhiza formation. Mycorrhiza 20:511–518PubMedCrossRefGoogle Scholar
  104. Vaario LM, Fritze H, Spetz P, Heinonsalo J, Hanajik P, Pennanen T (2011) Tricholoma matsutake dominates diverse microbial communities in different forest soils. Appl Environ Microbiol 77:8523–8531PubMedPubMedCentralCrossRefGoogle Scholar
  105. Vaario LM, Heinonsalo J, Spetz P, Pennanen T, Heinonen J, Tervahauta A, Fritze H (2012) The ectomycorrhizal fungus Tricholoma matsutake is a facultative saprotroph in vitro. Mycorrhiza 22:409–418PubMedCrossRefGoogle Scholar
  106. Vaario LM, Kiikkilä O, Hamberg L (2013) The influences of litter cover and understorey vegetation on fruitbody formation of Tricholoma matsutake in southern Finland. Appl Soil Ecol 66:56–60CrossRefGoogle Scholar
  107. Vaario LM, Lu JR, Koistinen A, Tervahauta A, Aronen T (2015a) Variation among matsutake ectomycorrhizae in four clones of Pinus sylvestris. Mycorrhiza 25:195–204PubMedCrossRefGoogle Scholar
  108. Vaario LM, Pennanen T, Lu JR, Palmen J, Stenman J, Leveinen J, Kilpelainen P, Kitunen V (2015b) Tricholoma matsutake can absorb and accumulate trace elements directly from rock fragments in the shiro. Mycorrhiza 25:325–334PubMedCrossRefGoogle Scholar
  109. Vaario LM, Savonen EM, Peltoniemi M, Miyazawa T, Pulkkinen P, Sarjala T (2015c) Fruiting pattern of Tricholoma matsutake in southern Finland. Scan J For Res 30:259–265Google Scholar
  110. van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72CrossRefGoogle Scholar
  111. Vincenot L, Nara K, Sthultz C, Labbe J, Dubois M, Tedersoo L, Martin F, Selosse M (2012) Extensive gene flow over Europe and possible speciation over Eurasia in the ectomycorrhizal basidiomycete Laccaria amethystina complex. Mol Ecol 21:281–299PubMedCrossRefGoogle Scholar
  112. Wan J, Koike A, Yamanaka K, Sotome K, Morinaga T, Tanaka C, Terashima Y, Aimi T (2012) Genetic diversity of Tricholoma matsutake and close allies associated with broad-leaved trees in Asia. Mushroom Sci Biotechnol 19:167–174Google Scholar
  113. Wang Y, Hall IR, Evans LA (1997) Ectomycorrhizal fungi with edible fruiting bodies 1.Tricholoma Matsutake and related fungi. Econ Bot 51:311–327CrossRefGoogle Scholar
  114. Wang Y, Cummings N, Guerin-Laguette A (2012) Cultivation of basidiomycete edible ectomycorrhizal mushrooms: Tricholoma, Lactarius, and Rhizopogon. In: Zambonelli A, Bonito GM (eds) Edible ectomycorrhizal mushrooms. Springer, Heidelberg, pp 281–304CrossRefGoogle Scholar
  115. Westover KM, Kennedy AC, Kelley SE (1997) Patterns of rhizosphere microbial community structure associated with co-occurring plant species. J Ecol 85:863–873CrossRefGoogle Scholar
  116. Xu JP, Sha TA, Li YC, Zhao ZW, Yang ZL (2008) Recombination and genetic differentiation among natural populations of the ectomycorrhizal mushroom Tricholoma matsutake from southwestern China. Mol Ecol 17:1238–1247PubMedCrossRefGoogle Scholar
  117. Xu JP, Cadorin M, Liang YJ, Yang ZL (2010) DNA-based geographic typing of the gourmet mushroom Tricholoma matsutake traded in China. Mycoscience 51:248–251CrossRefGoogle Scholar
  118. Yamada A (2015) Ecology of Tricholoma matsutake as the mycorrhizal mushroom. JATAFF J 3:30–34Google Scholar
  119. Yamada A, Kobayashi H (2008) Future perspective in the cultivation of matsuake. Shinrin Kagaku 53:41–42Google Scholar
  120. Yamada A, Kanekawa S, Ohmasa M (1999) Ectomycorrhiza formation of Tricholoma matsutake on Pinus densiflora. Mycoscience 40:193–198CrossRefGoogle Scholar
  121. Yamada A, Maeda K, Kobayashi H, Murata H (2006) Ectomycorrhizal symbiosis in vitro between Tricholoma matsutake and Pinus densiflora seedlings that resembles naturally occurring ‘shiro’. Mycorrhiza 16:111–116PubMedCrossRefGoogle Scholar
  122. Yamada A, Kobayashi H, Murata H, Kalmis E, Kalyoncu F, Fukuda M (2010) In vitro ectomycorrhizal specificity between the Asian red pine Pinus densiflora and Tricholoma matsutake and allied species from worldwide Pinaceae and Fagaceae forests. Mycorrhiza 20:333–339PubMedCrossRefGoogle Scholar
  123. Yamada A, Endo N, Murata H, Ohta A, Fukuda M (2014) Tricholoma matsutake Y1 strain associated with Pinus Densiflora shows a gradient of in vitro ectomycorrhizal specificity with Pinaceae and oak hosts. Mycoscience 55:27–34CrossRefGoogle Scholar
  124. Yamaguchi M, Narimatsu M, Fujita T, Kawai M, Kobayashi H, Ohta A, Yamada A, Matsushita N, Neda H, Shimokawa T, Murata H (2016) A qPCR assay that specifically quantifies Tricholoma matsutake biomass in natural soil. Mycorrhiza 26:847–861PubMedCrossRefGoogle Scholar
  125. Yamanaka T, Aimi T, Wan J, Cao H, Chen M (2011) Species of host trees associated with Tricholoma matsutake and allies in Asia. Mushroom Sci Biotechnol 19:79–87Google Scholar
  126. Yang XF, Luedeling E, Chen GL, Hyde KD, Yang YJ, Zhou DQ, Xu JC, Yang YP (2012) Climate change effects fruiting of the prize matsutake mushroom in China. Fungal Divers 56:189–198CrossRefGoogle Scholar
  127. Zak DR, Holmes WE, White DC, Peacock AD, Tilman D (2003) Plant diversity, soil microbial communities, and ecosystem function: are there any links? Ecology 84:2042–2050CrossRefGoogle Scholar
  128. Zang M (1990) A taxonomic and geographic study on the song Rong (matsutake) group and its allied species. Acta Mycol Sin 9:112–127Google Scholar
  129. Zeng DF, Chen B (2015) Genetic variability and bottleneck detection of four Tricholoma matsutake populations from northeastern and southwestern China. Environ Microbiol 17:2870–2881PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Forest SciencesUniversity of HelsinkiHelsinkiFinland
  2. 2.Key Laboratory of Economic Plants and BiotechnologyKunming Institute of Botany, Chinese Academy of SciencesKunmingChina
  3. 3.Department of Bioscience and Biotechnology, Faculty of AgricultureShinshu UniversityNaganoJapan

Personalised recommendations