On the Computational Modeling of Lipid Bilayers Using Thin-Shell Theory

  • Roger A. SauerEmail author
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 577)


This chapter discusses the computational modeling of lipid bilayers based on the nonlinear theory of thin shells. Several computational challenges are identified and various theoretical and computational ingredients are proposed in order to counter them. In particular, \(C^1\)-continuous, NURBS-based, LBB-conforming surface finite element discretizations are discussed. The constitutive behavior of the bilayer is based on in-plane viscosity and (near) area-incompressibility combined with the Helfrich bending model. Various shear stabilization techniques are proposed for quasi-static computations. All ingredients are formulated in the curvilinear coordinate system characterizing general surface parameterizations. The consistent linearization of the formulation is presented, and several numerical examples are shown.


Lipid Bilayer Shear Stiffness Helmholtz Free Energy Stabilization Scheme Spontaneous Curvature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author is grateful to the German Research Foundation (DFG) for supporting this research under grants GSC 111 and SA1822/5-1. The author also wishes to thank Kranthi Mandadapu, Thang Duong, and Amaresh Sahu for their valuable comments, and Yannick Omar for his help with the example in Sect. 13.3. Special thanks also go to David Steigmann for organizing the CISM summer school that led to this article.


  1. A. Agrawal, D. Steigmann, Modeling protein-mediated morphology in biomembranes. Biomech. Model. Mechanobiol. 8(5), 371–379 (2009)CrossRefGoogle Scholar
  2. M. Arroyo, A. DeSimone, Relaxation dynamics of fluid membranes. Phys. Rev. E 79, 031915 (2009)MathSciNetCrossRefGoogle Scholar
  3. I. Babuška, The finite element method with Lagrangian multipliers. Num. Math. 20, 179–192 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  4. E. Baesu, R.E. Rudd, J. Belak, M. McElfresh, Continuum modeling of cell membranes. Int. J. Non-lin. Mech. 39, 369–377 (2004)CrossRefzbMATHGoogle Scholar
  5. K.-J. Bathe, Finite Element Procedures (Prentice-Hall, New Jersey, 1996)zbMATHGoogle Scholar
  6. K.-J. Bathe, The inf-sup condition and its evaluation for mixed finite element methods. Comput. Struct. 79, 243–252 (2001)MathSciNetCrossRefGoogle Scholar
  7. D.J. Benson, Y. Bazilevs, M.-C. Hsu, T.J.R. Hughes, A large deformation, rotation-free, isogeometric shell. Comput. Methods Appl. Mech. Engrg. 200(13–16), 1367–1378 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. M.J. Borden, M.A. Scott, J.A. Evans, T.J.R. Hughes, Isogeometric finite element data structures based on Bezier extraction of NURBS. Int. J. Numer. Meth. Engng. 87, 15–47 (2011)CrossRefzbMATHGoogle Scholar
  9. P.B. Canham, The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J. Theoret. Biol. 26, 61–81 (1970)CrossRefGoogle Scholar
  10. F. Cirak, M. Ortiz, Fully C\(^1\)-conforming subdivision elements for finite element-deformation thin-shell analysis. Int. J. Numer. Meth. Engng 51, 813–833 (2001)CrossRefzbMATHGoogle Scholar
  11. B.D. Coleman, W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13, 167–178 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  12. C.J. Corbett, Isogeometric Finite Element Enrichment for Problems Dominated by Surface Effects. Ph.D. thesis, RWTH Aachen University, Aachen, Germany (2016)Google Scholar
  13. J.A. Cottrell, T.J.R. Hughes, Y. Bazilevs, Isogeometric Analysis (Wiley, Chichester, 2009)CrossRefzbMATHGoogle Scholar
  14. D. Cuvelier, I. Derényi, P. Bassereau, P. Nassoy, Coalescence of membrane tethers: experiments, theory, and applications. Biophys. J. 88, 2714–2726 (2005)CrossRefGoogle Scholar
  15. M. Dao, C.T. Lim, S. Suresh, Mechanics of the human red blood cell deformed by optical tweezers. J. Mech. Phys. Solids 51, 2259–2280 (2003)CrossRefGoogle Scholar
  16. I. Derényi, F. Jülicher, J. Prost, Formation and interaction of membrane tubes. Phy. Rev. Lett. 88(23), 238101 (2002)CrossRefGoogle Scholar
  17. Q. Du, X.Q. Wang, Convergence of numerical approximations to a phase field bending elasticity model of membrane deformations. Int. J. Numer. Anal. Model. 4(3–4), 441–459 (2007)MathSciNetzbMATHGoogle Scholar
  18. N.T. Dung, G.N. Wells, Geometrically nonlinear formulation for thin shells without rotation degrees of freedom. Comput. Methods Appl. Mech. Engrg. 197, 2778–2788 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  19. T.X. Duong, F. Roohbakhshan, R.A. Sauer, A new rotation-free isogeometric thin shell formulation and a corresponding continuity constraint for patch boundaries. Comput. Methods Appl. Mech. Engrg. 316, 43–83 (2017)MathSciNetCrossRefGoogle Scholar
  20. C.M. Elliott, B. Stinner, Modeling and computation of two phase geometric biomembranes using surface finite elements. J. Comp. Phys. 229(18), 6585–6612 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  21. F. Feng, W.S. Klug, Finite element modeling of lipid bilayer membranes. J. Comput. Phys. 220, 394–408 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  22. F.G. Flores, C.F. Estrada, A rotation-free thin shell quadrilateral. Comput. Methods Appl. Mech. Engrg. 196(25–28), 2631–2646 (2007)CrossRefzbMATHGoogle Scholar
  23. R. Gu, X. Wang, M. Gunzburger, Simulating vesicle-substrate adhesion using two phase field functions. J. Comput. Phys. 275, 626–641 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  24. W. Helfrich, Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. 28c, 693–703 (1973)Google Scholar
  25. T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Engrg. 194, 4135–4195 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  26. M. Jarić, U. Seifert, W. Wirtz, M. Wortis, Vesicular instabilities: The prolate-to-oblate transition and other shape instabilities of fluid bilayer membranes. Phys. Rev. E 52(6), 6623–6634 (1995)CrossRefGoogle Scholar
  27. J.T. Jenkins, The equations of mechanical equilibrium of a model membrane. SIAM J. Appl. Math. 32(4), 755–764 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  28. Y. Jie, L. Quanhui, L. Jixing, O.-Y. Zhong-Can, Numerical observation of nonaxisymmetric vesicles in fluid membranes. Phys. Rev. E 58(4), 4730–4736 (1998)CrossRefGoogle Scholar
  29. K.A. Johannessen, T. Kvamsdal, T. Dokken, Isogeometric analysis using LRB-splines. Comput. Methods Appl. Mech. Engng. 269, 471–514 (2014)CrossRefzbMATHGoogle Scholar
  30. O. Kahraman, N. Stoop, M.M. Müller, Fluid membrane vesicles in confinement. New J. Phys. 14, 095021 (2012)CrossRefGoogle Scholar
  31. J. Kiendl, K.-U. Bletzinger, J. Linhard, R. Wüchner, Isogeometric shell analysis with Kirchhoff-Love elements. Comput. Methods Appl. Mech. Engrg. 198, 3902–3914 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  32. J. Kiendl, Y. Bazilevs, M.-C. Hsu, R. Wüchner, K.-U. Bletzinger, The bending strip method for isogeometric analysis of Kirchhoff-Love shell structures comprised of multiple patches. Comput. Methods Appl. Mech. Engrg. 199(37–40), 2403–2416 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  33. J. Kiendl, M.-C. Hsu, M.C. Wu, A. Reali, Isogeometric Kirchhoff-Love shell formulations for general hyperelastic materials. Comput. Methods Appl. Mech. Engrg. 291, 280–303 (2015)MathSciNetCrossRefGoogle Scholar
  34. T. Kloeppel, W.A. Wall, A novel two-layer, coupled finite element approach for modeling the nonlinear elastic and viscoelastic behavior of human erythrocytes. Biomech. Model. Mechanobiol. 10(4), 445–459 (2011)CrossRefGoogle Scholar
  35. M.M. Kozlov, F. Campelo, N. Liska, L.V. Chernomordik, S.J. Marrink, H.T. McMahon, Mechanisms shaping cell membranes. Curr. Opin. Cell Biol. 29, 53–60 (2014)CrossRefGoogle Scholar
  36. C. Lau, W.E. Brownell, A.A. Spector, Internal forces, tension and energy density in tethered cellular membranes. J. Biomech. 45(7), 1328–1331 (2012)CrossRefGoogle Scholar
  37. H. Li, G. Lykotrafitis, Two-component coarse-grained molecular-dynamics model for the human erythrocyte membrane. Biophys. J. 102(1), 75–84 (2012)CrossRefGoogle Scholar
  38. A. Libai, J.G. Simmonds, The Nonlinear Theory of Elastic Shells, 2nd edn. (Cambridge University Press, Cambridge, 1998)CrossRefzbMATHGoogle Scholar
  39. J. Linhard, R. Wüchner, K.-U. Bletzinger, “Upgrading” membranes to shells - The CEG rotation free element and its application in structural anaylsis. Finite Elem. Anal. Des. 44(1–2), 63–74 (2007)Google Scholar
  40. R. Lipowsky, Spontaneous tabulation of membranes and vesicles reveals membrane tension generated by spontaneous curvature. Faraday Discuss. 161, 305–331 (2013)CrossRefGoogle Scholar
  41. T.V. Loc, T.H. Chien, N.X. Hung, On two-field nurbs-based isogeometric formulation for incompressible media problems. Vietnam J. Mech. 35, 225–237 (2013)CrossRefGoogle Scholar
  42. L. Ma, W.S. Klug, Viscous regularization and r-adaptive meshing for finite element analysis of lipid membrane mechanics. J. Comput. Phys. 227, 5816–5835 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  43. H.T. McMahon, J.L. Gallop, Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438(7068), 590–596 (2005)CrossRefGoogle Scholar
  44. P.M. Naghdi, Finite deformation of elastic rods and shells, in Proceedings of the IUTAM Symposium on Finite Elasticity, ed. by D.E. Carlson, R.T. Shields (Martinus Nijhoff Publishers, The Hague, 1982), pp. 47–103Google Scholar
  45. N. Nguyen-Thanh, J. Kiendl, H. Nguyen-Xuan, R. Wüchner, K.-U. Bletzinger, Y. Bazilevs, T. Rabczuk, Rotation free isogeometric thin shell analysis using pht-splines. Comput. Methods Appl. Mech. Engrg. 200(47–48), 3410–3424 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  46. Z. Peng, R.J. Asaro, Q. Zhu, Multiscale simulation of erythrocyte membranes. Phys. Rev. E 81, 031904 (2010)CrossRefGoogle Scholar
  47. W. Pietraszkiewicz, Geometrically nonlinear theories of thin elastic shells. Adv. Mech. 12(1), 51–130 (1989)MathSciNetGoogle Scholar
  48. M. Rahimi, M. Arroyo, Shape dynamics, lipid hydrodynamics, and the complex viscoelasticity of bilayer membranes. Phys. Rev. E 86, 011932 (2012)CrossRefGoogle Scholar
  49. N. Ramakrishnan, P.B.S. Kumar, J.H. Ipsen, Monte carlo simulations of fluid vesicles with in-plane orientational ordering. Phys. Rev. E 81, 041922 (2010)CrossRefGoogle Scholar
  50. P. Rangamani, A. Agrawal, K.K. Mandadapu, G. Oster, D.J. Steigmann, Interaction between surface shape and intra-surface viscous flow on lipid membranes. Biomech. Model. Mechanobiol. 12(4), 833–845 (2013)CrossRefGoogle Scholar
  51. P. Rangamani, K.K. Mandadapu, G. Oster, Protein-induced membrane curvature alters local membrane tension. Biophys. J. 107(3), 751–762 (2014)CrossRefGoogle Scholar
  52. R. Rangarajan, H. Gao, A finite element method to compute three-dimensional equilibrium configurations of fluid membranes: Optimal parameterization, variational formulation and applications. J. Comput. Phys. 297, 266–294 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  53. J.E. Rim, P.K. Purohit, W.S. Klug, Mechanical collapse of confined fluid membrane vesicles. Biomech. Model. Mechanobio. 13(6), 1277–1288 (2014)CrossRefGoogle Scholar
  54. A. Rosolen, C. Peco, M. Arroyo, An adaptive meshfree method for phase-field models of biomembranes. Part I: approximation with maximum-entropy basis functions. J. Comput. Phys. 249, 303–319 (2013)Google Scholar
  55. A. Sahu, R.A. Sauer, K.K. Mandadapu, The irreversible thermodynamics of curved lipid membranes (2017), arXiv:1701.06495
  56. D. Salac, M. Miksis, A level set projection model of lipid vesicles in general flows. J. Comput. Phys. 230(22), 8192–8215 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  57. R.A. Sauer, Stabilized finite element formulations for liquid membranes and their application to droplet contact. Int. J. Numer. Meth. Fluids 75(7), 519–545 (2014)MathSciNetCrossRefGoogle Scholar
  58. R.A. Sauer, L. De Lorenzis, A computational contact formulation based on surface potentials. Comput. Methods Appl. Mech. Engrg. 253, 369–395 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  59. R.A. Sauer, L. De Lorenzis, An unbiased computational contact formulation for 3D friction. Int. J. Numer. Meth. Engrg. 101(4), 251–280 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  60. R.A. Sauer, T.X. Duong, On the theoretical foundations of solid and liquid shells. Math. Mech. Solids. 22(3), 343–371 (2017)CrossRefGoogle Scholar
  61. R.A. Sauer, T.X. Duong, C.J. Corbett, A computational formulation for constrained solid and liquid membranes considering isogeometric finite elements. Comput. Methods Appl. Mech. Engrg. 271, 48–68 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  62. R.A. Sauer, T.X. Duong, K.K. Mandadapu, D.J. Steigmann, A stabilized finite element formulation for liquid shells and its application to lipid bilayers. J. Comput. Phys. 330, 436–466 (2017)MathSciNetCrossRefGoogle Scholar
  63. M.A. Scott, M.J. Borden, C.V. Verhoosel, T.W. Sederberg, T.J.R. Hughes, Isogeometric finite element data structures based on Bézier extraction of T-splines. Int. J. Numer. Meth. Engng. 88(2), 126–156 (2011)CrossRefzbMATHGoogle Scholar
  64. Z. Shi, T. Baumgart, Membrane tension and peripheral protein density mediate membrane shape transitions. Nat. commun. 6, 5974 (2015)CrossRefGoogle Scholar
  65. D. Steigmann, E. Baesu, R.E. Rudd, J. Belak, M. McElfresh, On the variational theory of cell-membrane equilibria. Interfaces Free Bound. 5, 357–366 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  66. D.J. Steigmann, Fluid films with curvature elasticity. Arch. Rat. Mech. Anal. 150, 127–152 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  67. I.V. Tasso, G.C. Buscaglia, A finite element method for viscous membranes. Comput. Methods Appl. Mech. Engrg. 255, 226–237 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  68. N. Walani, J. Torres, A. Agrawal, Endocytic proteins drive vesicle growth via instability in high membrane tension environment. Proc. Natl. Acad. Sci. 112(12), E1423–E1432 (2015)Google Scholar
  69. J. Zimmerberg, M.M. Kozlov, How proteins produce cellular membrane curvature. Nat. Rev. Mol. Cell Biol. 7(1), 9–19 (2006)CrossRefGoogle Scholar
  70. C. Zimmermann, R.A. Sauer, Adaptive local surface refinement based on LR-NURBS and its application to contact (2017), arXiv:1701.08742

Copyright information

© CISM International Centre for Mechanical Sciences 2018

Authors and Affiliations

  1. 1.Aachen Institute for Advanced Study in Computational Engineering Science (AICES)RWTH Aachen UniversityAachenGermany

Personalised recommendations