Identification of Artifacts in Life Cycle Phases of CPPS

  • Arndt LüderEmail author
  • Nicole Schmidt
  • Kristofer Hell
  • Hannes Röpke
  • Jacek Zawisza


Recent research and development activities within the field of production system engineering and operation focus on the increase of production system flexibility and adaptability. One common issue of those approaches is the consideration of hierarchical and modular production system architectures where the individual components of the system are equipped with certain functionalities and information. Up to now there is no common understanding about what a component constitutes, i.e. which parts of a production system can be regarded as components within the hierarchy and which functionalities and information are assigned to it. This gap will be closed within this, the prior, and the subsequent chapter.

They will at first discuss the relevant layers of components in a production system, then the types of information required to be assigned to a component on the different layers to establish a virtual representation of the component, and at last the description means exploitable to represent the identified information in the different life cycle phases of a production system.

This chapter in particular will consider in detail the information sets relevant for a production system component along the life cycle of a production system. Relevant artifacts are identified for each of the three main life cycle phases described in Chap.  5, assigned to the different layers of the production system hierarchy, and discussed against main cases of information reuse within the life cycle of production systems. Through this, it is intended to enable an identification of hierarchy layers based on relevant information sets.


Industrie 4.0 component Administration shell Life cycle information Virtual representation 


  1. Diedrich, C., Lüder, A., Hundt, L.: Bedeutung der Interoperabilität bei Entwurf und Nutzung von automatisierten Produktionssystemen. Automatisierungstechnik. 59(7), 426–438 (2011)CrossRefGoogle Scholar
  2. Dreher, S., Nürnberger, A., Kägebein, S., Schoch, A.: Digitiales Baustellenmanagement für Produktionsanlagen. ZWF Jahrg. 108, 1–2 (2013, in German)Google Scholar
  3. Duflou, J.R., Seliger, G., Kara, S., Umeda, Y., Ometto, A., Willems, B.: Efficiency and feasibility of product disassembly – a case-based study. CIRP Ann. Manuf. Technol. 57(2), 583–600 (2008)CrossRefGoogle Scholar
  4. Feldmann, K., Trautner, S., Meedt, O.: Innovative disassembly strategies based on flexible partial destructive tools. Annu. Rev. Control. 23, 159–164 (1999)CrossRefGoogle Scholar
  5. Hartel, M., Spath, D.: Öko-Portfolio: Methode zur Beurteilung der Recyclingeignung technischer Serienprodukte, pp. 371–392. VDI-Berichte, 1171, VDI Düsseldorf (1994, in German)Google Scholar
  6. Hell, K., Hillmann, R., Lüder, A., Röpke, H., Zawisza, J., Schmidt, N., Calà, A.: Demands on the virtual representation of physical Industrie 4.0 components. In: Conferenza INCOSE Italia su Systems Engineering (CIISE 2016), Turin, Italy, 14–16 November 2016Google Scholar
  7. Huber, A.: Demontageplanung und -steuerung: Planung und Steuerung industrieller Demontageprozesse mit PPS-Systemen. Dissertation, Otto-von-Guericke University Magdeburg (2001, in German)Google Scholar
  8. Hubig, M.-A.: Erarbeitung einer Methode zur deduktiven Ableitung Strategischer Recyclinganforderungen mit Hilfe der Szenariotechnik. Seminar Paper, University Kaiserslautern (2001, in German)Google Scholar
  9. AG Forschung and Innovation (Plattform Industrie 4.0): Aspekte der Forschungsroadmap in den Anwendungsszenarien. Report, BMWi (2016, in German)Google Scholar
  10. Kiehl, E. (ed.): Antriebslösungen – Mechatronik für Produktion und Logistik. Springer, Berlin (2007)Google Scholar
  11. Kis, T.: Planning and scheduling in the digital factory, KOMSO challenge workshop – math for the digital factory. In: Proceedings, Berlin, Germany, May 2014Google Scholar
  12. Leitão, P., Karnouskos, S.: Industrial Agents: Emerging Applications of Software Agents in Industry, pp. 153–170. Elsevier, Waltham, MA (2015)Google Scholar
  13. Lindahl, M., Sundin, E., Östlin, J., Björkman, M.: Concepts and definitions for product recovery, analysis and clarification of the terminology used in academia and industry. In: Brissaud, D., et al. (eds.) Innovation in Life Cycle Engineering and Sustainable Development, pp. 123–138. Springer (2006)Google Scholar
  14. Lüder, A., Foehr, M., Hundt, L., Hoffmann, M., Langer, Y., Frank, St.: Aggregation of engineering processes regarding the mechatronic approach. In: 16th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA 2011), Toulouse, France, Proceedings-CD, September 2011Google Scholar
  15. Lüder, A.: Strukturen zur verteilten Steuerung von Produktionssystemen, Habilitationsschrift. Fakultät Maschinenbau, Otto-von-Guericke Universität Magdeburg (2006)Google Scholar
  16. Lunze, J.: Automatisierungstechnik – Methoden für die Überwachung und Steuerung kontinuierlicher und ereignisdiskreter Systeme. Oldenbourg Verlag, München (2008)CrossRefzbMATHGoogle Scholar
  17. Obst, M., Holm, T., Bleuel, S., Claussnitzer, U., Evertz, L., Jäger, T., Nekolla, T.: Automatisierung im Life Cycle modularer Anlagen: Welche Veränderungen und Chancen sich ergeben. atp edition. 55(01–02), 24–31 (2013, in German)Google Scholar
  18. Pahl, G., Beitz, W., Feldhusen, J., Grote, K.-H.: Engineering Design – A Systematic Approach. Springer, London (2007)Google Scholar
  19. PAS 1049: Transmission of Recycling Relevant Product Information Between Producers and Recyclers – The Recycling Passport. Beuth Verlag, Berlin (2004, in German)Google Scholar
  20. Röpke, H., Lüder, A., Hell, K., Zawisza, J., Schmidt, N.: Identification of “Industrie 4.0” component hierarchy layers. In: Submitted to IEEE International Conference on Emerging Technologies and Factory Automation (ETFA 2016), Berlin, Germany, September 2016Google Scholar
  21. Rosemann, B., Meerkamm, H., Trautner, S., Feldmann, K.: Design for recycling, recycling data management and optimal end-of-life planning based on recycling-graphs. In: International Conference on Engineering Design (ICED 1999), pp. 1–6, Munich, Germany, 24–26 August 1999Google Scholar
  22. Ruhland, K.: Methoden und Werkzeuge zur recyclinggerechten Automobilentwicklung. Dissertation, University Kaiserslautern (2006, in German)Google Scholar
  23. Sametinger, J.: Software Engineering with Reusable Components. Springer, New York (1997)CrossRefzbMATHGoogle Scholar
  24. Schäffler, T., Foehr, M., Lüder, A., Supke, K.: Engineering process evaluation – evaluation of the impact of internationalisation decisions on the efficiency and quality of engineering processes. In: 22nd IEEE International Symposium on Industrial Electronics (ISIE 2013), Taipei, Taiwan, Proceedings, May 2013Google Scholar
  25. Schiffleitner, A., Bley, T., Schneider, R., Wimpff, D.-P.: Stakeholder perspectives on business model requirements for a sustainability data exchange platform across supply chains. In: Joint International Conference and Exhibition “Electronics Goes Green”, pp. 9–12, Berlin, Germany, Proceedings, September 2012Google Scholar
  26. Schmidt, N., Lüder, A., Hell, K., Röpke, H., Zawisza, J.: A generic model for the end-of-life phase of production systems. In: IECON 2016: The 42nd Annual Conference of IEEE Industrial Electronics Society, Florence, Italy, 24–27 October 2016Google Scholar
  27. Schultmann, F., Fröhling, M., Rentz, O.: Demontageplanung und -steuerung mit Enterprise-Resource- and Advanced-Planning-Systemen. Wirtschaftsinformatik (WI-Aufsatz). 44(6), 557–565 (2002, in German)Google Scholar
  28. Seliger, G., Basdere, B., Keil, T.: e-Cycling platform for profitable reuse. In: IEEE International Symposium on Assembly and Task Planning, Fukuoka, Japan, Proceedings, 28–29 May 2001Google Scholar
  29. Simolowo, E., Onovughe, E.: Automation of generation of models for disassembly process planning for recycling. In: World Congress on Engineering 2013, vol. III (WCE 2013), London, UK, Proceedings, 3–5 July 2013Google Scholar
  30. Steinhilper, R., Rieg, F. (eds.): Handbuch Konstruktion. Carl Hanser Verlag, Munich (2012, in German)Google Scholar
  31. VDI 2243: Recycling-Oriented Product Development. Beuth Verlag, Berlin (2002)Google Scholar
  32. VDI/VDE—GMA—Fachausschuss 7.21: Industrie 4.0. Referenzarchitekturmodell Industrie 4.0 (RAMI4.0). (2015). Last access 25 Oct 2016
  33. VDI 3695: Engineering of Industrial Plants. Evaluation and Optimization. Subject Methods, Part 3. Beuth Verlag, Berlin (2010)Google Scholar
  34. Vogel-Heuser, B., Diedrich, C., Broy, M.: Anforderungen an CPS aus Sicht der Automatisierungstechnik. Automatisierungstechnik. 61(10), 669–676 (2013)Google Scholar
  35. Willems, B., Seliger, G., Duflou, J., Basdere, B.: Contribution to design for adaptation: method to assess the adaptability of products (MAAP). In: EcoDesign2003: Third International Symposium on Environmentally Conscious Design and Inverse Manufacturing, pp. 589–596, IEEE, Tokyo, Japan, Proceedings, 8–11 December 2003Google Scholar
  36. Yang, C., Vyatkin, V., Pang, C.: Model-driven development of control software for distributed automation. IEEE Trans. Syst. Man Cybern. Syst. 44(3), 292–305 (2014)CrossRefGoogle Scholar
  37. Zawisza, J., Hell, K., Röpke, H., Lüder, A., Schmidt, N.: Generische Strukturierung von Produktionssystemen der Fertigungsindustrie. 17. Branchentreff der Mess- und Automatisierungstechnik (Automation 2016), Baden-Baden, Germany, Proceedings, VDI-Verlag, June 2016 (in German)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Arndt Lüder
    • 1
    Email author
  • Nicole Schmidt
    • 1
  • Kristofer Hell
    • 2
  • Hannes Röpke
    • 2
  • Jacek Zawisza
    • 2
  1. 1.Faculty Mechanical EngineeringOtto-von-Guericke UniversityMagdeburgGermany
  2. 2.Volkswagen AktiengesellschaftWolfsburgGermany

Personalised recommendations