Advertisement

Product and Systems Engineering/CA* Tool Chains

  • Kristin PaetzoldEmail author
Chapter

Abstract

For the development of interdisciplinary technical systems such as CPS, systemic approaches which stringently summarize the logic of development are currently available. These approaches are suitable to support the complexity of both the CPS as well as the related developmental processes. However, these development methods are relatively generic. An adaptation or a tailoring to specific conditions of both the products under consideration as well as the development of boundary conditions is absolutely necessary to use them effectively and efficiently. For the development of CPS also a variety of IT tools which effectively support the product development but only if they are well coordinated with the corresponding processes, are already available. If the interfaces are described sufficiently and comprehensively, and the data characteristics of the results of the various development activities are taken into account, media discontinuities can be reduced. The major challenge in the development of complex technical systems is the overall system analysis and the system integration. To this end, modern methods such as model-based engineering in general and model-based Systems Engineering in specific, provide powerful approaches that must be applied and adjusted for the purposes of the product and process characteristics. This adjustment process to product development and the integration of MBSE approaches into the IT-structures may be seen as the main challenges for the future.

Keywords

Product development IT-structure Systems engineering Data- and information flow Model-based systems engineering 

References

  1. Albers, A., Behrendt, M., Schroeter, J., Ott, S., Klingler, S.: X-in-the-loop: a framework for supporting central engineering activities and contracting complexity in product engineering processes. In: ICED 2013: 13th international conference on engineering design, Seoul, South-Korea (2013)Google Scholar
  2. Andreasen, M.M.: Machine design methods based on a systematic appraoch. Dissertation, Lund University, Sweden (1980)Google Scholar
  3. Andreasen, M.M., Hein, L.: Integrated Product Development. IFS, Bedford (1987)Google Scholar
  4. Birkhofer, H., Jänsch, J., Kloberdanz, H.: An extensive and detailed view of the application of design methods and methodology in industry. In: Samuel, A., Lew-is, W. (Hrsg.) Proceedings of the ICED 2005, Melbourne (2005)Google Scholar
  5. Blanchard, S.B., Fabrycky, J.W.: Systems Engineering and Analysis. Verlag Pearson New International Edition (2012)Google Scholar
  6. Boehm, B.: Guidelines für Verifying and Validation Software Requirements and Design Specifications. In: Samet, P.A. (ed.) Euro IFIP 79. North-Holland Publishing Company, Amsterdam (1979)Google Scholar
  7. Boehm, B.W.: A spiral model of software development and enhancement. Computer 21, 61–72 (May 1988)Google Scholar
  8. Chestnut, H.: Systems Engineering Methods. Wiley, New York (1967)Google Scholar
  9. Delligatti, L.: SysML Distilled. Addison-Wesley (2013)Google Scholar
  10. Ehrlenspiel, K., Meerkamm, H.: Integrierte Produktentwicklung – Denkabläufe, Methodeneinsatz, Zusammenarbeit. 5. Auflage. Carl Hanser, München (2013)Google Scholar
  11. Eigner, M., Dickkopf, T., Schulte, T., Schneider, M.: mecPro2 – Entwurf einer Beschreibungssystematik zur Entwicklung cybertronischer Systeme mit SysML. In: Schulze, S., Muggeo, C. (eds.) Tag des Systems Engineering, S. 163–172. Hanser Verlag, München (2015a)Google Scholar
  12. Eigner, M., Eickhoff, T., Ernst, J., Eiden, A.: Systemübergreifendes Änderungsmanagement zwischen PLM und ERP. In: PLM Jahrbuch 2016 – Ein Leitfaden für den PLM Markt, pp. 76–79. Weka GmbH, Darmstadt (2015b)Google Scholar
  13. Eigner, M., Gilz, T., Zafirov, R.: Neue Methoden, Prozesse und IT Lösungen für die virtuelle disziplinübergreifende Produktentwicklung. In: Berns, K., Schindler, C., Dreßler, K., Jörg, B., Kalmar, R., Zolynski, G. (Hrsg.) Proceedings of the 2nd commercial vehicle technology symposium (CVT 2012) (2012)Google Scholar
  14. Eigner, M., Roubanov, D., Zafirov, R.: Modellbasierte Virtuelle Produktentwicklung. Springer, Berlin (2014)CrossRefGoogle Scholar
  15. Eisner, H.: Essentials of Project and Systems Engineering Management, 3rd edn. Wiley, New York (2008)Google Scholar
  16. Estefan, J.A.: Survey of Model-Based Systems Engineering (MBSE) methodologies. Technical Report. California Institute of Technology (25 May 2007)Google Scholar
  17. Forsber, K., Mooz, H.: The relationship of system engineering to the project cycle. Center for systems managements. Proceedings of the first annual meeting of the National Council for Systems Engineering and the 12th annual meeting of the American Society for Engineering Management, Chattanooga (20–23 October 1991)Google Scholar
  18. Freisleben, D., Schabacker, M.: Wissensbasierte Projektnavigation in der Produktentwicklung. In: Proceedings of the 20th CAD-FEM Users’ Meeting 2002, International Conference on FEM-Technology, BD. 2, S. 1–10 (2002)Google Scholar
  19. Friedenthal, S.: Object oriented systems engineering. Process integration for 2000 and beyond: systems engineering and software symposium, 3rd edn. Lockheed Martin Corporation, New Orleans, LA (2014)Google Scholar
  20. Gajski, D.D.: Construction of a large scale multiprocessor. Cedar Project, Laboratory for advanced Supercomputers, Dept. of Computer Sciences, University of Illinois at Urbana-Chambaign (Report/Department of Computer Sciences, No. UIUCDCS-R-83-1123) (1983)Google Scholar
  21. Gausemeier, J., Michels, J.S., Orlik, L., Redenius, A.: Modellierung und Planung von Produktentstehungsprozessen, In: VDI-Berichte Nr. 1819, S. 245–256. VDI-Verlag, Düsseldorf (2004)Google Scholar
  22. Gericke, K., Blessing, L.: Comparisons of design methodologies and process models across disciplines: a literature review. In: Culley, S.J., et al. (eds.) Design Processes, pp. 393–404. Design Society, Glasgow (2011)Google Scholar
  23. Gericke, K., Meißner, M., Paetzold, K.: Understanding the context of product development. Proceedings of the 19th international conference on engineering design 2013, 19–22. August 2013, Seoul, Korea (2013)Google Scholar
  24. Gericke, K., Moser, H.: Adapting a design approach: a case study in a small space company. In: Heisig, P., Clarkson, P.J., (eds.) Proceedings of 2nd international workshop on Modeling and Management of Engineering Processes MMEP, Cambridge UK (2012)Google Scholar
  25. Haberfellner, R., de Weck, O.L., Fricke, E., Vössner, S.: Systems Engineering: Grundlagen und Anwendung. Orell Füssli Verlage; 13. Auflage (2015)Google Scholar
  26. Hales, C., Gooch, S.: Managing engineering design, 2nd edn. Springer, London (2004)CrossRefGoogle Scholar
  27. Hammer, M.: Seven insights about processes. In: Proceedings of the conference on strategic power process ensuring survival creating competitive advantage. Boston, USA (2001)Google Scholar
  28. Hitchins, D.K.: Systems Engineering: A 21st Century Systems Methodology. Wiley (2007)Google Scholar
  29. Horvath, I., Gerritsen, B.: Cyper-physical systems: concepts, technologies and implementation principles. In: Proceedings of TMCE 2012, Karlsruhe (2012)Google Scholar
  30. INCOSE: Technical operations. Systems engineering vision 2020, version 2.03. Seattle, WA: International Council on Systems Engineering, Seattle, WA, INCOSE-TP-2004-004-02 (2007)Google Scholar
  31. INCOSE: Systems engineering handbook, version 3.2; INCOSE-TP-2003-002-03.2 (2010)Google Scholar
  32. Kline, S.J.: Innovation is not a linear process. In: Research management, Vol. 26, Nr. 2, S.36–45 1995Google Scholar
  33. Kossiakoff, A., Sweet, W.N., Seymour, S.J., Biemer, S.M.: Systems Engineering Principles and Practice, 2. Auflage. Wiley (2010)Google Scholar
  34. Lee, E.: Cyper physical systems: Design challenges. In: 11th IEEE Symposium on Object Oriented Real Time Distributed Computing (ISORC) (2008)Google Scholar
  35. Lindemann, U.: Methodische Entwicklung technischer Produkte – Methoden flexibel und situationsgerecht anwenden, 2. Auflage. Springer, Berlin (2007)Google Scholar
  36. Meißner, M., Blessing, L.: Adapting a design process to a new set of standards – a case study from the railway industry. In: Marjanovic, D. (ed.) 8th international design conference – design 2004. Design Society, Glasgow (2004)Google Scholar
  37. Miller, G.A., Galanter, E., Pribram, K.H.: Strategien des Handelns – Pläne und Strukturen des Verhaltens. Ernst Klett, Stuttgart (1973)Google Scholar
  38. NASA Systems Engineering Handbook. NASA, SP-610S, Washington (1995)Google Scholar
  39. NDIA, Wagner, Brockwell, Daniels, Loesh, Gosnell: NDIA Paper: use of a model-based approach to minimize system development risk and time-to-field for new systems. Final Report of the Model Based Engineering (MBE) Subcommittee NDIA, 10 Feb 2011 (2011)Google Scholar
  40. Negele, H.: Systemtechnische Methodik zur ganzheitlichen Modellierung am Bei-spiel der integrierten Produktentwicklung. Dissertation, TU München (1998)Google Scholar
  41. Oliver, D.W., Kelliher, T.P., Keegan, J.G.: Engineering Complex Systems with Models and Objects. McGraw-Hill (1997). ISBN:0-07-048188-1Google Scholar
  42. Omiciuolo, M., Thiel, M., Förster, K.P., Paetzold, K., Foerstner, R.: General purpose modeling and domain specific simulation: a framework for space mechanisms design. IEEE SysCon 2015, Proceedings, Vancouver (2015)Google Scholar
  43. Paetzold, K, Reitmeier, J.: Approaches for process attendant property validation of products. 1st International Conference on Modeling and Management of Engineering Processes MMEP 2010, Cambridge (2010)Google Scholar
  44. Pahl, G., Beitz, W.: Konstruktionslehre – Grundlagen erfolgreicher Produktent-wicklung. Methoden und Anwendung. 7. Auflage. Springer, Berlin (2007)Google Scholar
  45. Panreck, K.: Rechnergestützte Modellbildung physikalisch-technischer Systeme, Fortschritt-Berichte, VDI-Verlag, Düsseldorf (2002)Google Scholar
  46. Parraguez, P.: A networked perspective on the engineering design process. PhD-Thesis, Techinical University of Denmark (2015)Google Scholar
  47. Patzak, G.: Systemtechnik – Planung komplexer innovativer Systeme, Grundlagen, Methoden, Techniken. Springer, Berlin (1982)CrossRefGoogle Scholar
  48. Ponn, J., Lindemann, U. (eds.): Konzeptentwicklung und Gestaltung technischer Produkte. Springer, Heidelberg (2011)Google Scholar
  49. Pugh, S.: Total design: Integrated Methods for Successful Product Engineering. Addison-Wesley, Wokingham, England (1991)Google Scholar
  50. Rechtlin, E., Maier, M.W.: The Art of Systems Architecting. 2nd edn, CRC Press (2000)Google Scholar
  51. Reitmeier, J.: Eigenschaftsorientierte Simulationsplanung - Ein Beitrag zur effizienten virtuellen Absicherung der Produktfunktionalität. Dissertation, UniBW München, Verlag Dr. Hut (2015). ISBN:978-3843921626Google Scholar
  52. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference Manual. The Addison-Wesley Object Technology Series. Addison-Wesley (1999)Google Scholar
  53. Sangiovanni-Vincentelli, A., Yang, G., Shukla, S.K., Mathaikutty, S.A., Sztipanovits, J.: Metamodeling: an emerging representation paradigm for system-level design. University of California Berkeley, IEEE Design & Test of Computers (2009)Google Scholar
  54. Skalak, S.C., Kemser, H.-P., Ter-Minassian, N.: Defining a product development methodology with concurrent engineering for small manufacturing companies. J. Eng. Des. 8(4), 305–328 (1997)CrossRefGoogle Scholar
  55. Sop Njindam, T.: A systemic approach to analyze failures of complex multidisciplinary systems on the basis of their weak emergent behaviour. Dissertation, UniBW München, Verlag Dr. Hut (2015)Google Scholar
  56. Stachowiak, H.: Allgemeine Modelltheorie. Springer, Wien (1973)CrossRefGoogle Scholar
  57. Sztipanovits, J.: Composition of cyber-physical systems. In: 14th Annual IEEE Int’l. Conference and Workshop on the engineering of Computer-Based Systems (ECBS ’07), pp. 3–6. IEEE Computer Society, Washington (2007)Google Scholar
  58. VDI 2206: Entwicklungsmethodik für mechatronische Systeme, Hrsg. Verein Deutscher Ingenieure, Ausg. Juni (2004)Google Scholar
  59. VDI 2221: Methodik zum Entwickeln und Konstruieren technischer Systeme und Produkte, Hrsg. Verein Deutscher Ingenieure, Düsseldorf, Ausg. November (1986)Google Scholar
  60. VDI 2422: Entwicklungsmethodik für Geräte mit Steuerung durch Mikroelektronik, Hrsg. Verein Deutscher Ingenieure, Düsseldorf (1994)Google Scholar
  61. Walker, R., Thomas, D.: A model of design representation and synthesis. 22nd design automation conference, Las Vegas (1985)Google Scholar
  62. Weber, C.: CPM/PDD – An extended theoretical approach to modeling products and product development processes. In: Bley, H., Jansen, H., Krause, F.-L., Shpitalni, M. (eds.) Proceedings of the German-Israeli symposium on advances in methods and systems for development of products and processes. Fraunhofer, Stuttgart (2005)Google Scholar
  63. Weilkins, T.: Systems Engineering mit SysML/UML: Modellierung, Analyse, Design, 2nd edn. dpunkt Verlag (2008)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.University of German Federal Armed Forces (UniBW)MunichGermany

Personalised recommendations