A Deterministic Product Ramp-up Process: How to Integrate a Multi-Disciplinary Knowledge Base

  • Roland WillmannEmail author
  • Wolfgang Kastner


Ramping up new products to volume production is a challenge for most manufacturing companies. The deviation between plan and reality of costs and duration of ramp-up projects is still significant, and the achievable quality of new products at the start-up of volume production is difficult to predict. Consequently, new products arrive too late at the customer, causing dissatisfaction or even loss of customers, additional operational costs or unplanned enhancement of ramp-up budget. The vertical knowledge exchange between product engineering and process engineering, as well as horizontally along the production process and the supply chain has turned out to be the major reason for deviations. This chapter describes how information from product engineering and process engineering has to be structured for automated recommendation of information reuse during the planning of ramp-up projects. It discusses the involvement of a multi-disciplinary knowledge base in a production environment but also organizational measures to be taken into account in order to address this challenge. Needs for standardization across enterprises is addressed as well. Through thus achievable improvement of planning quality, based on reused production knowledge, ramp-up projects can improve towards deterministic ramp-up processes. The article is of interest for industrial engineers, quality managers and ICT-managers in the industrial field.


Knowledge management Product ramp-up Ontology Ontology mapping and matchmaking Multi-disciplinary engineering 


  1. Abele, E. et al.: Global Production: A Handbook for Strategy and Implementation. Springer, Berlin (2008). ISBN:978-3-540-71652-5Google Scholar
  2. Allemang, D., Hendler, J.: Semantic Web for the working ontologist—effective modelling in RDFS and OWL. s.l.:Elsevier (2011). ISBN:978-0-12-285965-5Google Scholar
  3. Breyfogle III, F.W.: Implementing Six Sigma Second Edition. Austin, TX: Wiley (2003). ISBN:0-471-26572-1Google Scholar
  4. Brickley, D., Guha, R.V., McBride, B.: RDF Schema (RDFS)—Release 1.1. [Online]. (2014). Accessed 30 Apr 2016
  5. Cisek, R., Habicht, C., Neise, P.: Gestaltung wandlungsfähiger Produktionssysteme [eng. Design of agile production systems]. ZWF—Zeitschrift für wirtschaftlichen Fabrikbetrieb. 9, 441–445 (2002)Google Scholar
  6. Closs, D.J.: Design for supply chain management. Logist. Q. Mag. 13(1), 9–10 (2007)Google Scholar
  7. Deutsches Institut für Normung e. V: DIN 8580:2003-09: Manufacturing Processes—Terms and Definitions, Division. s.l.:Beuth (2003)Google Scholar
  8. Dietrich, E., Schulze, A.: Statistische Verfahren zur Maschinen- und Prozessqualifikation [eng. Statistical methods for machine and process qualification]. Munich, Vienna (2003). ISBN:3-446-22077-1Google Scholar
  9. Forschungsunion, National Academy of Science and Engineering: recommendations for implementing the strategic initiative INDUSTRIE 4.0—Final report of the Industrie 4.0 Working Group. [Online]. (2013). Accessed 8 Mar 2015
  10. Fransoo, J.C., de Kok, A.G.: What Determines Product Ramp-up Performance? A Review of Characteristics Based on a Case Study at Nokia Mobile Phones. s.l.:Beta, Research School for Operations Management and Logistics (2007). ISSN:1386-9213Google Scholar
  11. Harris, S., Seaborne, A., Prud’hommeaux, E.: SPARQL 1.1 query language. [Online]. (2013). Accessed 30 Apr 2016
  12. Hodgson, R., Keller, P.J., Hodges, J., Spivak, J.: QUDT—Quantities, Units, Dimensions and Data Types ontologies. [Online]. (2014). Accessed 1 May 2016
  13. Horroks, I. et al.: SWRL: a Semantic Web Rule Language combining OWL and RuleML. [Online]. (2004). Accessed 30 Apr 2016
  14. Hüttenrauch, M., Baum, M.: Effiziente Vielfalt: Die dritte Revolution in der Automobilindustrie [engl. Efficient variety: the third revolution of the automotive industry]. Springer, Berlin (2008). ISBN:978-3-540-72115-4Google Scholar
  15. ISA: ANSI/ISA-95.00.02-2001: enterprise control system integration—Part 2: Object model attributes. ISA-The Instrumentation, Systems, and Automation Society, Research Triangle Park, North Carolina, USA (2001). ISBN:1-55617-773-9Google Scholar
  16. ISO—International Standards Organization: ISO 21747-2006—Statistical methods—Process performance and capability statistics for measured quality characteristics. [Online]. (2007). Accessed 17 July 2011
  17. Kinkel, S., Maloca, S.: Modernisierung der Produktion—Flexibilitäts- und Stabilitätsstrategien in der deutschen Industrie [eng. Modern production—flexibility and stability strategies in the German industry]. [Online]. (2010). Accessed 6 May 2016
  18. Koether, R., Rau, W.: Fertigungstechnik für Wirtschaftsingenieure [engl. Production engineering for industrial engineering and managemen], 3rd edn. Hansa, München (2008). ISBN 978-3-446-41274-3Google Scholar
  19. Kurttila, P., Shaw, M., Helo, P.: Model factory concept—Enabler for quick manufacturing capacity ramp-up. s.l., s.n. (2010)Google Scholar
  20. Macleod, P.: A review of flexible circuit technology and its applications. s.l.:PRIME Faraday Partnership (2002). ISBN:1-84402-023-1Google Scholar
  21. Nenni, D., McLellan, P.: FABLESS: the transformation of the semiconductor industry. s.l.: (2013). ISBN:978-1-4675-9307-6
  22. Nyhuis, P., Reinhart, G., Abele, E.: Wandlungsfähige Produktionssysteme—Heute die Industrie von morgen gestalten [eng. Agile production systems—shaping today the industry of tomorrow]. s.l.:978-3-939026-96-9 (n.d.)Google Scholar
  23. Ong, S. K., Xu, Q. L., Nee, A. Y. C.: Design Reuse in Product Development Modeling, Analysis and Optimization. World Scientific Publishing, Singapore (2008). ISBN:13-978-981-283-262-7Google Scholar
  24. Schmidt-Dilcher, J., Minssen, H.: Ewige Baustelle PPS—Strukturkonservative Rationalisierungsmuster im Maschinenbaubetrieb [en. Infinite construction site CAPP—structurally conservative rationalization patterns in systems engineering units]. In: Kooperationsnetze, flexible Fertigungsstrukturen und Gruppennetzwerke—Ein interdisziplinärer Ansatz [en: Cooperation networks, flexible manufacturing structures and group networks—an interdisciplinary approach], pp. 83–117. Leske + Budrich, Opladen (1996). ISBN:978-3-322-97326-9Google Scholar
  25. SEMATECH, Inc.: Computer Integrated Manufacturing (CIM) Framework specification version 2.0. s.l.:Technology Transfer # 93061697J-ENG (1998)Google Scholar
  26. Semiconductor Equipment and Material International: SEMI E164-0313—specification for EDA common metadata. s.l.:Semiconductor Equipment and Material International. (2013)Google Scholar
  27. Slamanig, M., Winkler, H.: Management of product change projects: a supply chain perspective. Int. J. Serv. Oper. Manage. 11(4), 481–500. ISSN 1744-2370 (Print), 1744-2389 (Online) (2012)Google Scholar
  28. Terwiesch, C., Bohn, R. E., Chea, K. S.: International product transfer and production ramp-up: a case study from the data storage industry. In: R&D Management 31, 4, pp. 435–451. Blackwell, Oxford (2001)Google Scholar
  29. Terwiesch, C., Xu, Y.: The copy exactly ramp-up strategy: trading-off learning with process-change, s.l.: s.n. (2003)Google Scholar
  30. United Nations Development Programme: UNSPSC(R)—United Nations Standard Products ans Services Code. [Online]. (2014). Zugriff am 14-05-2016.
  31. W3C—The World Wide Web Consortium: RDF 1.1 Primer—W3C Working Group note. [Online]. (2014). Accessed Mar 2015
  32. W3C—World Wide Web Consortium: RDF 1.1 Primer—W3C Working Group note. [Online]. (2014). Accessed Mar 2015
  33. Wappis, J., Jung, B., (2010): Taschenbuch—Null-Fehler-Management—Umsetzung von Six Sigma [engl. Zero-defects management—Implementation of six sigma], 3 edn. Munich: Carl Hanser Verlag. ISBN:978-3-446-42262-9.Google Scholar
  34. Weber, A.: The Pros and Cons of cells. Assembly, 4 November. (2004)Google Scholar
  35. Willmann, R.: Ontology Matchmaking of Product Ramp-up Knowledge in Manufacturing Industries. Vienna University of Technology, Vienna (2016)Google Scholar
  36. Willmann, R., Biffl, S. & Serral Asensio, E.: Determining Qualified Production Processes for New Product Ramp-up Using Semantic Web.ACM, Graz (2014). ISBN:978-1-4503-2769-5Google Scholar
  37. Willmann, R., Serral, E., Kastner, W., Biffl, S.: Shortening of product ramp-up by using a centralized knowledge base. s.l., IEEE, pp. 516–522 (2013). ISBN 978-1-4799-0752-6Google Scholar
  38. World Wide Web Consortium (W3C): OWL 2 Web Ontology Language document overview, Second edn. s.n. (2012)

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Carinthia University of Applied SciencesVillachAustria
  2. 2.Technische Universität WienWienAustria

Personalised recommendations