Advertisement

Standardized Information Exchange Within Production System Engineering

  • Arndt LüderEmail author
  • Nicole Schmidt
  • Rainer Drath
Chapter

Abstract

Information exchange is one of the critical issues within the multi-disciplinary engineering chain of production system engineering. In the subsequent chapter the problem of identifying and standardizing an appropriate data exchange format for this field of application will be considered. It will be argued, why AutomationML can be an appropriate choice to fulfil current requirements.

Keywords

Production system engineering chain Data exchange Standardized data exchange format AutomationML 

Notes

Acknowledgement

The authors of this paper intend to thank Björn Grimm (Daimler AG) for his valuable support and discussion of the content of this paper within the AutomationML association.

References

  1. Arbeitsgruppen der Plattform Industrie 4.0: Umsetzungsstrategie Industrie 4.0 – Ergebnisbericht der Plattform Industrie 4.0. https://www.bmwi.de/BMWi/Redaktion/PDF/I/industrie-40-verbaendeplattform-bericht,property=pdf,bereich=bmwi2012, sprache=de,rwb=true.pdf (2015). Last Access 01 Feb 2016 (in German)
  2. AutomationML e.V: AutomationML. www.automationml.org (2016). Last Access Sept 2016
  3. Bartel, M., Schyja, A., Kuhlenkötter, B.: More than a Mockup – smart components: reusable fully functional virtual components from scratch. Prod. Eng. 8(6), 727–735 (2014–12)Google Scholar
  4. Drath, R. (ed.): Datenaustausch in der Anlagenplanung mit AutomationML. Springer, Berlin (2010)Google Scholar
  5. Drath, R., Barth, M.: Concept for managing multiple semantics with AutomationML – maturity level concept of semantic standardization. In: 17th IEEE International Conference on Emerging Technologies & Factory Automation (ETFA 2012), Krakow, Poland, Proceedings, September 2012Google Scholar
  6. Drath, R., Fay, A., Barth, M.: Interoperabilität von Engineering-Werkzeugen. Automatisierungstechnik. 59(7), 451–460 (2011)CrossRefGoogle Scholar
  7. Ferscha, A.: Whitebook JKU Production Research, Johannes Keppler University Linz. http://www.pervasive.jku.at/download/JKU_PRODUCTION_WHITEBOOK.pdf (2016). Last Access Dec 2016
  8. Grimm, B.: AutomationML in den Engineeringprozess einführen, ATP edition. Band 58(Ausgabe 05), 42–51 (2016)Google Scholar
  9. Hundt, L., Lüder, A.: Development of a method for the implementation of interoperable tool chains applying mechatronical thinking – Use case engineering of logic control, In: 17th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA 2012), Krakow, Poland, Proceedings, September 2012Google Scholar
  10. Industrial Internet Consortium (IIC): The industrial internet reference architecture technical paper. http://www.iiconsortium.org/IIRA.htm (2016)
  11. International Electrotechnical Commission: IEC 62424: Representation of process control engineering – Requests in P&I diagrams and data exchange between P&ID tools and PCE-CAE tools. www.iec.ch (2008)
  12. International Electrotechnical Commission: IEC 62714: Engineering data exchange format for use in industrial automation systems engineering – AutomationML. www.iec.ch (2014)
  13. International Organization for Standardization: ISO/PAS 17506:2012 – Industrial automation systems and integration – COLLADA digital asset schema specification for 3D visualization of industrial data. www.iso.org (2012a)
  14. International Organization for Standardization: ISO 14306:2012 – Industrial automation systems and integration – JT file format specification for 3D visualization. ISO Publisher, Research Triangle Park, NC (2012b)Google Scholar
  15. Kagermann, H., Wahlster, W., Helbig, J. (eds.): Recommendations for implementing the strategic initiative INDUSTRIE 4.0 – Securing the future of German manufacturing industry, Final report of the Industrie 4.0 Working Group. http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Material_fuer_Sonderseiten/Industrie_4.0/Final_report__Industrie_4.0_accessible.pdf (2013) Last Access 01 Feb 2016
  16. Lüder, A., Foehr, M., Hundt, L., Hoffmann, M., Langer, Y., Frank, St.: Aggregation of engineering processes regarding the mechatronic approach. In: 16th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA 2011), Toulouse, France, Proceedings-CD, September 2011Google Scholar
  17. Lüder, A., Hundt, L., Foehr, M., Wagner, T., Zaddach, J.-J.: Manufacturing system engineering with mechatronical units. In: 15th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA 2010), Bilbao, Spain, Proceedings-CD, September 2010Google Scholar
  18. Lüder, A., Schmidt, N., Rosendahl, R., John, M.: Integrating different information types within AutomationML. In: 19th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Barcelona, Spain, Proceedings, September 2014Google Scholar
  19. Object Management Group: XML Metadata Interchange (XMI) Version 2.5.1. www.omg.org/spec/XMI/ (2015)
  20. Obst, M., Holm, T., Urbas, L., Fay, A., Kreft, S., Hempen, U., Albers, T.: Beschreibung von Prozessmodulen, ATP edition. Band 57(Ausgabe 01–02), 48–59 (2016)Google Scholar
  21. Pfrommer, J., Stogl, D., Aleksandrov, K., Schubert, V., Hein, B.: Modelling and orchestration of service-based production systems via skills. In: IEEE 19th Conference on Emerging Technologies and Factory Automation (ETFA 2014), Barcelona, Spain, Proceedings, September 2014Google Scholar
  22. PLCopen association: PLCopen XML. www.plcopen.org (2012)
  23. Reißenweber, B.: Feldbussysteme in der industriellen Praxis. Oldenbourg Industrieverlag, München (2009)Google Scholar
  24. Schmidt, N., Lüder, A.: AutomationML in a nutshell, AutomationML consortium. www.automationml.org (2015)
  25. Schmidt, N., Lüder, A., Steininger, H., Biffl, S.: Analyzing requirements on software tools according to the functional engineering phase in the technical systems engineering process. In: 19th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Barcelona, Spain, Proceedings, September 2014Google Scholar
  26. Süß, S., Strahilov, A., Diedrich, C.: Behaviour simulation for virtual commissioning using co-simulation. In: 20th IEEE Conference on Emerging Technologies & Factory Automation (ETFA), Luxembourg, Proceedings, 2015Google Scholar
  27. Tauchnitz, T.: Engineering, Prozessdaten, Anlagendaten, Industrie 4.0 – alles wächst zusammen. Automation Kongress 2016, Baden Baden, Germany, Proceedings, June 2016Google Scholar
  28. VDI/VDE: Industrie 4.0 – Wertschöpfungsketten, VDI/VDE Gesellschaft Mess- und Automatisierungstechnik. Status report (2014)Google Scholar
  29. VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik – Fachausschuss 7.21 Industrie 4.0: Status Report: Reference Architecture Model Industrie 4.0 (RAMI4.0). http://www.zvei.org/Publikationen/GMA-Status-Report-RAMI-40-July-2015.pdf (2015)
  30. Verein Deutscher Ingenieure: VDI Guideline 3695 – Engineering von Anlagen – Evaluieren und optimieren des Engineerings. VDI Verlag, Düsseldorf (2009)Google Scholar
  31. Wagner, T., Haußner, C., Elger, J., Löwen, U., Lüder, A.: Engineering processes for decentralized factory automation systems. In: Silvestre-Blanes, J. (ed.) Factory Automation, vol. 22. In-Tech, Austria. ISBN:978-953-7619-42-8. http://www.intechopen.com/articles/show/title/engineering-processes-for-decentralized-factory-automation-systems (2010)
  32. Workflow Management Coalition: XML Process Definition Language (XPDL). www.xpdl.org (2012)
  33. Xu, X., Nee, A.: Advanced Design and Manufacturing Based on STEP. Springer, New York (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Faculty Mechanical EngineeringOtto-von-Guericke UniversityMagdeburgGermany
  2. 2.ABB AG ForschungszentrumLadenburgGermany

Personalised recommendations