Application to a New AMG Method

  • James LottesEmail author
Part of the Springer Theses book series (Springer Theses)


This chapter presents a new AMG method for nonsymmetric problems involving heuristics inspired directly by the convergence theory of the previous chapter. While less rigorous than previous chapters, it proves by example that the abstract theory of previous chapters can be used to inform, quite directly, the development of practical methods. The presented heuristics include a novel coarsening strategy and interpolation targeting the “approximation properties” of the convergence theory that generalizes the “energy-minimizing” weights used in symmetric methods. Numerical results are presented, showing how well the developed method works, and also demonstrating how well the bounds of the theory work on a real example.


Previous Chapter Column Norm GMRES Iteration Jacobi Iteration Convergence Bound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Adams, M., Brezina, M., Hu, J.J., Tuminaro, R.S.: Parallel multigrid smoothing: polynomial versus Gauss-Seidel. J. Comp. Phys. 188(2), 593–610 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Brandt, A.: General highly accurate algebraic coarsening. Electron. Trans. Numer. Anal. 10, 1–20 (2000)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Brannick, J., Zikatanov, L.: Algebraic multigrid methods based on compatible relaxation and energy minimization. In: Proceedings of the 16th International Conference on Domain Decomposition Methods (2005)Google Scholar
  4. 4.
    Bröker, O., Grote, M.J.: Sparse approximate inverse smoothers for geometric and algebraic multigrid. Appl. Numer. Math. 41(1), 61–80 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cleary, A.J., Falgout, R.D., Henson, V.E., Jones, J.E.: Coarse-grid selection for parallel algebraic multigri. Solving Irregularly Structured Problems in Parallel. Lecture Notes in Computer Science, pp. 104–115. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  6. 6.
    Demko, S., Moss, W.F., Smith, P.W.: Decay rates for inverses of band matrices. Math. Comp. 43(168), 491–499 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Falgout, R.D., Vassilevski, P.S., Zikatanov, L.T.: On two-grid convergence estimates. Numer. Lin. Algebr. Appl. 12(5–6), 471–494 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Manteuffel, T.A.: The tchebychev iteration for nonsymmetric linear systems. Numer. Math. 28, 307–327 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Nikiforov, V.: Revisiting schur’s bound on the largest singular value (2007).
  10. 10.
    Ostrowski, A.: Über das Nichtverschwinden einer Klasse von determinanten und die Lokalisierung der charakteristischen Wurzeln von Matrizen. Compos. Math. 9, 209–226 (1951)zbMATHGoogle Scholar
  11. 11.
    Tang, W.P., Wan, W.L.: Sparse approximate inverse smoother for multigrid. SIAM J. Matrix Anal. Appl. 21(4), 1236–1252 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Wan, W.L., Chan, T.F., Smith, B.: An energy-minimizing interpolation for robust multigrid methods. SIAM J. Sci. Comp. 21(4), 1632–1649 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Xu, J., Zikatanov, L.: On an energy minimizing basis for algebraic multigrid methods. Comput. Vis. Sci. 7(3–4), 121–127 (2004)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Google Inc.Mountain ViewUSA

Personalised recommendations