Genomic Data Clustering on FPGAs for Compression

  • Enrico Petraglio
  • Rick Wertenbroek
  • Flavio Capitao
  • Nicolas Guex
  • Christian Iseli
  • Yann Thoma
Conference paper

DOI: 10.1007/978-3-319-56258-2_20

Part of the Lecture Notes in Computer Science book series (LNCS, volume 10216)
Cite this paper as:
Petraglio E., Wertenbroek R., Capitao F., Guex N., Iseli C., Thoma Y. (2017) Genomic Data Clustering on FPGAs for Compression. In: Wong S., Beck A., Bertels K., Carro L. (eds) Applied Reconfigurable Computing. ARC 2017. Lecture Notes in Computer Science, vol 10216. Springer, Cham

Abstract

Current sequencing machine technology generates very large and redundant volumes of genomic data for each biological sample. Today data and associated metadata are formatted in very large text file assemblies called FASTQ carrying the information of billions of genome fragments referred to as “reads” and composed of strings of nucleotide bases with lengths in the range of a few tenths to a few hundreds bases. Compressing such data is definitely required in order to manage the sheer amount of data soon to be generated. Doing so implies finding redundant information in the raw sequences. While most of it can be mapped onto the human reference genome and fits well for compression, about 10% of it usually does not map to any reference [1]. For these orphan sequences, finding redundancy will help compression. Doing so requires clustering these reads, a very time consuming process. Within this context this paper presents a FPGA implementation of a clustering algorithm for genomic reads, implemented on Pico Computing EX-700 AC-510 hardware, offering more than a \(1000\times \) speed up over a CPU implementation while reducing power consumption by a 700 factor.

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Enrico Petraglio
    • 1
  • Rick Wertenbroek
    • 1
  • Flavio Capitao
    • 1
  • Nicolas Guex
    • 2
  • Christian Iseli
    • 2
  • Yann Thoma
    • 1
  1. 1.REDS Institute, HEIG-VD School of Business and Engineering VaudHES-SO University of Applied Sciences Western SwitzerlandYverdon-les-BainsSwitzerland
  2. 2.Vital-ITSIB Swiss Institute of BioinformaticsLausanneSwitzerland

Personalised recommendations