Skip to main content

Overview and Prospects of Selenium Phytoremediation Approaches

  • Chapter
  • First Online:

Part of the book series: Plant Ecophysiology ((KLEC,volume 11))

Abstract

Phytoremediation, a plant based technology, is perceived as a novel, low-cost, eco-friendly technology for in-situ management of Se-contaminated soil and water resources. Among the different phytoremediation mechanisms, phytoextraction, phytovolatilization, and rhizofiltration are primarily responsible for the management of Se in a contaminated environment. Selection of the best-suited plant and cultivation strategies are crucial for the success of phytoremediation technology at any given site. For example, Brassica-based cropping systems are about two times more efficient than agroforestry-based systems in removing Se from the contaminated sites. In addition, the potential of several transgenic approaches have been highlighted for further increasing Se accumulation, volatilization, and tolerance by plant species selected for phytoremediation. The accumulation of Se in plant tissues may also act as a deterrent for a number of herbivores like crickets, grasshoppers, prairie dogs, etc., while the entry of Se into the food chain can be minimized by growing non-food plants, e.g. flowers, in Se-contaminated soils. In this chapter, a number of alternatives for safe disposal and utilization of Se-rich biomass have also been discussed. These options will greatly help in promoting the adoption of phytoremediation as a vital tool in sustainable management of Se-contaminated soil and water resources.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adhikari AR, Acharya K, Shanahan SA, Zhou X (2011) Removal of nutrients and metals by constructed and naturally created wetlands in the Las Vegas Valley, Nevada. Environ Monit Assess 180:97–113

    Article  CAS  PubMed  Google Scholar 

  • Agalou A, Roussis A, Spaink HP (2005) The Arabidopsis selenium-binding protein confers tolerance to toxic levels of selenium. Funct Plant Biol 32(10):881–890

    Article  CAS  Google Scholar 

  • Agbossamey Y, Petit H, Seoane J, St-Laurent G (1998) Performance of lambs fed either hay or silage supplemented with canola or fish meals. Can J Anim Sci 78:135–141

    Article  Google Scholar 

  • Ajwa HA, Bañuelos GS, Mayland HF (1998) Selenium uptake by plants from soils amended with inorganic and organic materials. J Environ Qual 27:1218–1227

    Article  CAS  Google Scholar 

  • Alfthan G, Aspila P, Ekholm P, Eurola M, Hartikainen H, Hero H, Aro A (2010) Nationwide supplementation of sodium selenate to commercial fertilizers: History and 25-year results from the finnish selenium monitoring programme. In: Thompson B, Amoroso L (eds) Combating micronutrient deficiencies: food-based approaches. FAO/CAB International, Rome, pp 312–337

    Chapter  Google Scholar 

  • Atkinson R, Aschmann SM, Hasegawa D, Thompson-Eagle ET, Frankenberger WT Jr (1990) Kinetics of the atmospherically important reactions of dimethyl selenide. Environ Sci Technol 24:1326–1332

    Article  CAS  Google Scholar 

  • Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal polluted soils. In: Terry N, Bañuelos GS (eds) Phytoremediation of contaminated soil and water. CRC Press, Boca Raton, pp 85–107

    Google Scholar 

  • Bañuelos GS (2000) Factors influencing field phytoremediation of selenium-laden soils. In: Terry N, Bañuelos GS (eds) Phytoremediation of contaminated soil and water. CRC Press, Boca Raton, pp 41–59

    Google Scholar 

  • Bañuelos GS (2002) Irrigation of broccoli and canola with boron and selenium-laden effluent. J Environ Qual 31:1802–1808

    Article  PubMed  Google Scholar 

  • Bañuelos GS (2006a) Multi-faceted considerations for sustainable phytoremediation under field conditions. For Snow Landsc Res 80:235–245

    Google Scholar 

  • Bañuelos GS (2006b) Phyto-products may be essential for sustainability and implementation of phytoremediation. Environ Pollut 144:19–23

    Article  PubMed  CAS  Google Scholar 

  • Bañuelos GS (2009) Phytoremediation of selenium contaminated soil and waters produces biofortified products and new agricultural by-products. In: Bañuelos GS, Lin ZQ (eds) Biofortification and development of new agricultural products. CRC Press, Boca Raton, pp 57–70

    Google Scholar 

  • Bañuelos GS, Dhillon KS (2011) Developing a sustainable phytomanagement strategy for excessive selenium in Western United States and India. Int J Phytoremediation 13(Suppl. 1):208–228

    Article  PubMed  Google Scholar 

  • Bañuelos GS, Hanson BD (2010) Use of selenium-enriched mustard and canola seed meals as potential bioherbicides and green fertilizer in strawberry production. Hort Science 45:1567–1572

    Google Scholar 

  • Bañuelos GS, Lin ZQ (2010) Cultivation of the Indian fig Opuntia in selenium-rich drainage sediments under field conditions. Soil Use Manag 26:167–175

    Article  Google Scholar 

  • Bañuelos GS, Mayland HF (2000) Absorption and distribution of selenium in animals consuming canola grown for selenium phytoremediation. Ecotoxicol Environ Saf 46:322–328

    Article  PubMed  CAS  Google Scholar 

  • Bañuelos GS, Meek D (1990) Accumulation of selenium in plants grown on selenium-treated soil. J Environ Qual 19:772–777

    Article  Google Scholar 

  • Bañuelos GS, Mead R, Akohoue S (1991) Adding selenium-enriched plant tissue to soil causes the accumulation of selenium in alfalfa. J Plant Nutr 17:701–713

    Article  Google Scholar 

  • Bañuelos GS, Mead R, Wu L, Beuselinck P, Akohoue S (1992) Differential selenium accumulation among forage plant species grown in soils amended with selenium-enriched plant tissue. J Soil Water Conserv 47:338–342

    Google Scholar 

  • Bañuelos GS, Cardon GE, Phene CJ, Wu L, Akohoue S, Zambrzuski S (1993) Soil boron and selenium removal by three plant species. Plant Soil 148:253–263

    Article  Google Scholar 

  • Bañuelos GS, Mackey B, Wu L, Zambrzuski S, Akohoue S (1995) Bioextraction of soil boron by tall fescue. Ecotoxicol Environ Saf 31:110–116

    Article  PubMed  Google Scholar 

  • Bañuelos GS, Ajwa HA, Mackey B, Wu L, Cook C, Akohoue S, Zambrzuski S (1997) Evaluation of different plant species used for phytoremediation of high soil selenium. J Environ Qual 26:639–646

    Article  Google Scholar 

  • Bañuelos GS, Lin ZQ, Wu L, Terry N (2002a) Phytoremediation of selenium-contaminated soils and waters: fundamentals and future prospects. Rev Environ Health 17:291–306

    Article  PubMed  Google Scholar 

  • Bañuelos GS, Vickerman DB, Trumble JT, Shannon MC, Davis CD, Finley JW, Mayland HF (2002b) Biotransfer possibilities of selenium from plants used in phytoremediation. Int J Phytoremediation 4:315–329

    Article  Google Scholar 

  • Bañuelos GS, Terry N, LeDuc DL, Pilon-Smits EAH, Mackey B (2005) Field trial of transgenic Indian mustard plants shows enhanced phytoremediation of selenium contaminated sediment. Environ Sci Technol 39:1771–1777

    Article  PubMed  CAS  Google Scholar 

  • Bañuelos GS, LeDuc DL, Pilon-Smits EAH, Tagmount A, Terry N (2007) Transgenic Indian mustard overexpressing selenocysteine lyase, selenocysteine methyltransferase, or methionine methyltransferase exhibit enhanced potential for selenium phytoremediation under field conditions. Environ Sci Technol 41:599–605

    Article  PubMed  CAS  Google Scholar 

  • Bañuelos GS, da Roche J, Robinson J (2010) Developing Se-enriched animal feed and biofuel from canola planted for managing Se-laden drainage waters in the Westside of central California. Int J Phytoremediation 12:243–253

    Article  PubMed  CAS  Google Scholar 

  • Bañuelos GS, Stushnoff C, Walse SS, Zuber T, Yang SI, Pickering IJ, Freeman JL (2012) Biofortified, selenium enriched, fruit and cladode from three Opuntia Cactus pear cultivars grown on agricultural drainage sediment for use in nutraceutical foods. Food Chem 135:9–16

    Article  CAS  Google Scholar 

  • Bañuelos GS, Dhillon KS, Banga SS (2013) Oilseed Brassicas. In: Singh BP (ed) Biofuel crops: production, physiology and genetics. CAB International, Wallingford, pp 339–368

    Chapter  Google Scholar 

  • Bañuelos GS, Arroyo I, Pickering IJ, Yang SI, Freeman JL (2015) Selenium biofortification of broccoli and carrots grown in soil amended with Se-enriched hyperaccumulator Stanleya pinnata. Food Chem 166:603–608

    Article  PubMed  CAS  Google Scholar 

  • Beath OA, Gilbert CS, Eppson HF (1935) The use of indicator plants in locating seleniferous soils in the Western United States. I General. Am J Bot 26:257–269

    Article  Google Scholar 

  • Bogden JD, Kemp FW, Buse M, Thind IS, Louria DB, Forgacs J, Llanos G, Moncoya-Terrones I (1981) Composition of tobaccos from countries with high and low incidences of lung cancer. I. Selenium, polonium-210, Alternaria, tar, and nicotine. J Natl Cancer Inst 66:27–31

    CAS  PubMed  Google Scholar 

  • Bolan N, Kunhikrishnan A, Thangarajana R, Kumpiened J, Parke J, Makinof T, Kirkhamg MB, Scheckelh K (2014) Remediation of heavy metal(loid)s contaminated soils – to mobilize or to immobilize? J Hazard Mater 266:141–166

    Article  CAS  PubMed  Google Scholar 

  • Brown T, Shrift A (1981) Exclusion of selenium from proteins in selenium-tolerant Astragalus species. Plant Physiol 67:1951–1953

    Article  Google Scholar 

  • Carvalho KM, Martin DM (2001) Removal of aqueous selenium by four aquatic plants. J Aquat Plant Manag 39:33–36

    Google Scholar 

  • Chaney RL (1983) Plant uptake of inorganic waste constituents. In: Parr JF, Marsh PD, Kla JM (eds) Land treatment of hazardous wastes. Noyes Data Corporation, Park Ridge, pp 50–76

    Google Scholar 

  • Chaney RL, Brown SL, Li YM, Angle JS, Homer FA, Green CE (1995) Potential use of metal hyperaccumulators. Minist Environ Mag 3:9–11

    Google Scholar 

  • Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJM (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284

    Article  CAS  PubMed  Google Scholar 

  • Chortyk OT, Chaplin JF, Schlotzhauer WS (1984) Growing selenium-enriched tobacco. J Agric Food Chem 32:64–68

    Article  CAS  Google Scholar 

  • Combs GF (2000) Food system-based approaches to improving micronutrient nutrition: the case for selenium. BioFactors 12:39–43

    Article  CAS  PubMed  Google Scholar 

  • Combs GF Jr (2005) Current evidence and research needs to support a health claim for selenium and cancer prevention. J Nutr 135:343–347

    CAS  PubMed  Google Scholar 

  • Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110:715–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cunningham SD, Berti WR, Huang JW (1995) Phytoremediation of contaminated soils. Trends Biotechnol 13:393–397

    Article  CAS  Google Scholar 

  • Dalai A, Kulkarni M, Meher L (2006) Biodiesel productions from vegetable oils using heterogeneous catalysts and their applications as lubricity additives. Paper presented at the EIC Climate Change Technology, 2006 IEEE

    Google Scholar 

  • de Souza MP, Pilon-Smits EAH, Lytle CM, Hwang S, Tai J, Honma TSU, Yeh L, Terry N (1998) Rate-limiting steps in selenium assimilation and volatilization by Indian mustard. Plant Physiol 117:1487–1494

    Article  PubMed  PubMed Central  Google Scholar 

  • Dhillon KS, Dhillon SK (1991) Selenium toxicity in soils, plants and animals in some parts of Punjab, India. Int J Environ Stud 37:15–24

    Article  CAS  Google Scholar 

  • Dhillon KS, Dhillon SK (1997) Distribution of seleniferous soils in northwest India and associated toxicity problems in the soil-plant-animal-human system. Land Contam Reclam 5:313–323

    Google Scholar 

  • Dhillon KS, Dhillon SK (2003a) Quality of underground water and its contribution towards selenium enrichment of the soil-plant system for a seleniferous region of northwest India. J Hydrol 272:120–130

    Article  CAS  Google Scholar 

  • Dhillon KS, Dhillon SK (2003b) Distribution and management of seleniferous soils. Adv Agron 79:119–184

    Article  CAS  Google Scholar 

  • Dhillon KS, Dhillon SK (2009a) Selenium concentrations of common weeds and agricultural crops grown in the seleniferous soils of northwestern India. Sci Total Environ 407:6150–6156

    Article  CAS  PubMed  Google Scholar 

  • Dhillon KS, Dhillon SK (2009b) Accumulation and distribution of selenium in some vegetable crops grown in selenate-Se treated clay loam soil. Front Agric China 3:366–373

    Article  Google Scholar 

  • Dhillon SK, Dhillon KS (2009c) Phytoremediation of selenium-contaminated soils: the efficiency of different cropping systems. Soil Use Manag 25:441–453

    Article  Google Scholar 

  • Dhillon SK, Dhillon KS (2009d) Characterization and management of seleniferous soils of Punjab. Research Bulletin No. 1/2009. Department of Soil Science, Punjab Agricultural University, Ludhiana, pp 1–87

    Google Scholar 

  • Dhillon KS, Dhillon SK (2014) Development and mapping of seleniferous soils in northwestern India. Chemosphere 99:56–63

    Article  CAS  PubMed  Google Scholar 

  • Dhillon KS, Dhillon SK (2016) Phytoremediation of selenium contaminated soils: strategies and limitations. In: Bañuelos GS, Lin ZQ, Moraes MF, Guilherme LRG, Reis ARD (eds) Global advances in selenium research from theory to application. CRC Press/Balkemma, Leiden, pp 201–202

    Google Scholar 

  • Dhillon KS, Randhawa NS, Sinha MK (1977) Selenium status of some common fodders and natural grasses of Punjab. Indian J Dairy Sci 30:218–224

    CAS  Google Scholar 

  • Dhillon KS, Bawa SS, Dhillon SK (1992) Selenium toxicity in some plants and soils of Punjab. J Indian Soc Soil Sci 40:132–136

    CAS  Google Scholar 

  • Dhillon SK, Hundal BK, Dhillon KS (2007) Bioavailability of selenium to forage crops in a sandy loam soil amended with Se-rich plant materials. Chemosphere 66:1734–1743

    Article  CAS  PubMed  Google Scholar 

  • Dhillon KS, Dhillon SK, Thind HS (2008a) Evaluation of different agroforestry tree species for their suitability in the phytoremediation of seleniferous soils. Soil Use Manag 24:208–216

    Article  Google Scholar 

  • Dhillon SK, Dhillon KS, Kohli A, Khera KL (2008b) Evaluation of leaching and runoff losses of selenium from seleniferous soils through simulated rainfall. J Plant Nutr Soil Sci 171:187–192

    Article  CAS  Google Scholar 

  • Dhillon KS, Dhillon SK, Dogra R (2010) Selenium accumulation by forage and grain crops and volatilization from seleniferous soils amended with different organic materials. Chemosphere 78:548–556

    Article  CAS  PubMed  Google Scholar 

  • Doran JW (1982) Microorganisms and the biological cycling of selenium. Adv Microb Ecol 6:1–32

    Article  CAS  Google Scholar 

  • Duckart EC, Waldron LJ, Doner HE (1992) Selenium uptake and volatilization from plants growing in soil. Soil Sci 153:94–99

    Article  CAS  Google Scholar 

  • Echevarria M, Henry P, Ammerman C, Rao P, Miles R (1988) Estimation of the relative bioavailability of inorganic selenium sources for poultry. 2. Tissue uptake of selenium from high dietary selenium concentrations. Poult Sci 67:1585–1592

    Article  CAS  PubMed  Google Scholar 

  • Ellis DR, Sors TG, Brunk DG, Albrecht C, Orser C, Lahner B, Wood KV, Harris HH, Pickering IJ, Salt DE (2004) Production of Se-methylselenocysteine in transgenic plants expressing selenocysteine methyltransferase. BMC Plant Biol 4:1–11

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Mehdawi AF, Pilon-Smits EAH (2012) Ecological aspects of plant selenium hyperaccumulation. Plant Biol 14:1–10

    Article  CAS  PubMed  Google Scholar 

  • Elrashidi MA, Adriano DC, Workman SM, Lindsay WL (1987) Chemical equilibria of selenium in soils: a theoretical development. Soil Sci 144:141–152

    Article  CAS  Google Scholar 

  • Elrashidi MA, Adriano DC, Lindsay WL (1989) Solubility, speciation and transformations of selenium in soils. In: Jacobs LWG (ed) Selenium in agriculture and the environment, SSSA Spec. Publ. 23, Madison, WI, pp 51–63

    Google Scholar 

  • Esringü A, Turan M (2012) The roles of diethylenetriamine pentaacetate (DTPA) and ethylenediamine disuccinate (EDDS) in remediation of selenium from contaminated soil by Brussels sprouts (Brassica oleracea var. gemmifera). Water Air Soil Pollut 223:351–362

    Article  CAS  Google Scholar 

  • Evangelou MWH, Ebel M, Schaeffer A (2007) Chelate assisted phytoextraction of heavy metals from soil: effect, mechanism, toxicity, and fate of chelating agents. Chemosphere 68:989–1003

    Article  CAS  PubMed  Google Scholar 

  • Evans CS, Asher CJ, Johnson CM (1968) Isolation of dimethyl diselenide and other volatile selenium compounds from Astragalus Racemosus (Pursh.) Aust J Biol Sci 21:13–20

    CAS  Google Scholar 

  • Fässler E, Robinson BH, Stauffer W, Gupta SK, Papritz A, Schulin R (2010) Phytomanagement of metal-contaminated agricultural land using sunflower, maize and tobacco. Agric Ecosyst Environ 136:49–58

    Article  CAS  Google Scholar 

  • Finley JW (2006) Bioavailability of selenium from foods. Nutr Rev 64:146–151

    Article  PubMed  Google Scholar 

  • Finley JW (2007) Increased intakes of selenium-enriched foods may benefit human health. J Sci Food Agric 87:1620–1629

    Article  CAS  Google Scholar 

  • Fleming GA (1980) Essential micronutrients II: iodine and selenium. In: Davis BE (ed) Applied soil trace elements. Wiley, New York, pp 199–234

    Google Scholar 

  • Fordyce F (2013) Selenium deficiency and toxicity in the environment. In: Selinus O (ed) Essentials of medical geology. Springer, Dordrecht, pp 375–416

    Chapter  Google Scholar 

  • Frankenberger WT Jr, Karlson U (1994) Microbial volatilization of selenium from soils and sediments. In: Frankenberger WT Jr, Benson S (eds) Selenium in the environment. Marcel Dekker, New York, pp 369–388

    Google Scholar 

  • Freeman JL, Quinn CF, Marcus MA, Fakra S, Pilon-Smits EAH (2006) Selenium-tolerant diamondback moth disarms hyperaccumulator plant defense. Curr Biol 16:2181–2192

    Article  CAS  PubMed  Google Scholar 

  • Freeman JL, Lindblom SD, Quinn CF, Fakra S, Marcus MA, Pilon-Smits EAH (2007) Selenium accumulation protects plants from herbivory by Orthoptera via toxicity and deterrence. New Phytol 175:490–500

    Article  CAS  PubMed  Google Scholar 

  • Freeman JL, Quinn CF, Lindblom SD, Klamper EM, Pilon-Smits EAH (2009) Selenium protects the hyperaccumulator Stanleya pinnata against black-tailed prairie dog herbivory in native seleniferous habitats. Am J Bot 96:1075–1085

    Article  CAS  PubMed  Google Scholar 

  • Galeas ML, Klamper EM, Bennett LE, Freeman JL, Kondratieff BC, Pilon-Smits EAH (2008) Selenium hyperaccumulation affects plant arthropod load in the field. New Phytol 177:715–724

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Liu Y, Huang Y, Lin ZQ, Bañuelos GS, Lam MHW, Yin X (2011) Daily selenium intake in a moderate selenium deficiency area of Suzhou, China. Food Chem 126:1088–1093

    Article  CAS  Google Scholar 

  • Garifullina GF, Owen JD, Lindblom SD, Tufan H, Pilon M, Pilon-Smits EAH (2003) Expression of a mouse selenocysteine lyase in Brassica juncea chloroplasts affects selenium tolerance and accumulation. Physiol Plant 118:538–544

    Article  CAS  Google Scholar 

  • Gondi F, Pantó G, Feher J, Bogye G, Alfthan G (1992) Selenium in Hungary. Biol Trace Elem Res 35:299–306

    Article  CAS  PubMed  Google Scholar 

  • Hall JA, Bobe G, Hunter JK, Vorachek WR, Stewart WC, Vanegas JA, Estill CT, Mosher WD, Pirelli GJ (2013) Effect of feeding selenium-fertilized alfalfa hay on performance of weaned beef calves. PLoS One 8:e58188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanson B, Garifullina GF, Lindblom SD, Wangeline A, Ackley A, Kramer K, Norton AP, Lawrence CB, Pilon-Smits EAH (2003) Selenium accumulation protects Brassica juncea from invertebrate herbivory and fungal infection. New Phytol 159:461–469

    Article  CAS  Google Scholar 

  • Hanson B, Lindblom SD, Loeffler ML, Pilon-Smits EAH (2004) Selenium protects plants from phloem feeding aphids due to both deterrence and toxicity. New Phytol 162:655–662

    Article  CAS  Google Scholar 

  • Hensen D, Duda P, Zayed AM, Terry N (1998) Selenium removal by constructed wetlands: role of biological volatilization. Environ Sci Technol 32:591–597

    Article  Google Scholar 

  • Hira CK, Partal K, Dhillon KS (2004) Dietary selenium intake by men and women in high and low selenium areas of Punjab. Public Health Nutr 7:39–43

    Article  PubMed  Google Scholar 

  • Ip C, Ganther HE (1992) Relationship between the chemical form of selenium and anticarcinogenic activity. In: Wattenberg I, Lipkin M, Boon CW, Kellott GJ (eds) Cancer chemoprevention. CRC Press, Boca Raton, pp 479–488

    Google Scholar 

  • Johnsson L (1991) Selenium uptake by plants as a function of soil type, organic matter content and pH. Plant Soil 133:57–64

    Article  CAS  Google Scholar 

  • Kubachka KM, Meija J, LeDuc DL, Terry N, Caruso JA (2007) Selenium volatiles as proxy to the metabolic pathways of selenium in genetically modified Brassica juncea. Environ Sci Technol 41:1863–1869

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni MG, Dalai A, Bakhshi N (2007) Transesterification of canola oil in mixed methanol/ethanol system and use of esters as lubricity additive. Bioresour Technol 98:2027–2033

    Article  CAS  PubMed  Google Scholar 

  • Kumar NPBA, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 92:1232–1238

    Article  Google Scholar 

  • Lasat MM (2000) Phytoextraction of metals from contaminated sites – a critical review of plant/soil/metal interaction and assessment of pertinent agronomic issues. J Hazard Subst Res 2:1–25

    Google Scholar 

  • LeDuc DL, Tarun AS, Montes-Bayon M, Meija J, Malit MF, Wu CP, Abdel-Samie M, Chiang CY, Tagmount A, de Souza MP, Neuhierl B, Bock A, Caruso JA, Terry N (2004) Overexpression of selenocysteine methyltransferase in Arabidopsis and Indian mustard increases selenium tolerance and accumulation. Plant Physiol 135:377–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LeDuc DL, AbdelSamie M, Móntes-Bayon M, Wu CP, Reisinger SJ, Terry N (2006) Overexpressing both ATP sulfurylase and selenocysteine methyltransferase enhances selenium phytoremediation traits in Indian mustard. Environ Pollut 144:70–76

    Article  CAS  PubMed  Google Scholar 

  • Lemly DA, Ohlendorf HM (2002) Regulatory implications of using constructed wetlands to treat selenium-laden wastewater. Ecotoxicol Environ Saf 52:46–56

    Article  CAS  PubMed  Google Scholar 

  • Lewis BG, Johnson CM, Broyer TC (1971) Cleavage of Se-ethylselenomethionine selenonium salt by a cabbage leaf enzyme fraction. Biochim Biophys Acta 237:603–605

    Article  CAS  PubMed  Google Scholar 

  • Li L, Xie Y, El-Sayed WM, Szakacs JG, Franklin MR, Roberts JC (2005) Chemopreventive activity of selenocysteine prodrugs against tobacco-derived nitrosamine (NNK) induced lung tumors in the A/J mouse. J Biochem Mol Toxicol 19:396–405

    Article  CAS  PubMed  Google Scholar 

  • Lin ZQ, Terry N (2003) Selenium removal by constructed wetlands: quantitative importance of biological volatilization in the treatment of selenium-laden agricultural drainage water. Environ Sci Technol 37:606–615

    Article  CAS  PubMed  Google Scholar 

  • Lyons G (2010) Selenium in cereals: improving the efficiency of agronomic biofortification in the UK. Plant Soil 332:1–4

    Article  CAS  Google Scholar 

  • Mayland HF, James LJ, Panter KE, Sonderegger JL (1989) Selenium in seleniferous environments. In: Jacobs LWG (ed) Selenium in agriculture and the environment, SSSA Spec. Publ. 23, Madison, WI, pp 15–50

    Google Scholar 

  • McDonnell KP, Ward SM, McNulty PB, Howard-Hildige R (2000) Results of engine and vehicle testing of semirefined rapeseed oil. Trans Am Soc Agric Eng 43:1309–1316

    Article  CAS  Google Scholar 

  • Miranda AF, Muradov N, Gujar A, Stevenson T, Nugegoda D, Ball AS, Mouradov A (2014) Application of aquatic plants for the treatment of selenium-rich mining wastewater and production of renewable fuels and petrochemicals. J Sustain Bioenergy Syst 4:97–112

    Article  CAS  Google Scholar 

  • Misra S, Gedamu L (1989) Heavy-metal tolerant transgenic Brassica napus and Nicotiana tabacum plants. Theor Appl Genet 78:161–168

    Article  CAS  PubMed  Google Scholar 

  • Muñiz-Naveiro Ó, Domínguez-González R, Bermejo-Barrera A, Bermejo-Barrera P, Cocho JA, Fraga JM (2006) Study of the bioavailability of selenium in cows’ milk after a supplementation of cow feed with different forms of selenium. Anal Bioanal Chem 385:189–196

    Article  PubMed  CAS  Google Scholar 

  • Neal RH (1995) Selenium. In: Alloway BJ (ed) Heavy metals in soils. Blackie Academic and Professional, London, pp 260–283

    Chapter  Google Scholar 

  • Neuhierl B, Thanbichler M, Lottspeich F, Bock A (1999) A family of S-methyl- methionine dependent thiol/selenol methyltransferases: role in selenium tolerance and evolutionary relation. J Biol Chem 274:5407–5414

    Article  CAS  PubMed  Google Scholar 

  • Ohlendorf HM, Hothem RL (1995) Agricultural drainwater effects on wildlife in Central California. In: Hoffman DF, Rattner BA, Burton GA Jr, Cairns J (eds) Handbook of ecotoxicology. Lewis Press, Boca Raton, pp 577–595

    Google Scholar 

  • Pezzarossa B, Petruzelli G, Petacco F, Malorgio F, Ferri T (2007) Absorption of selenium by Lactuca sativa as affected by carboxymethylcellulose. Chemosphere 67:322–329

    Article  CAS  PubMed  Google Scholar 

  • Pilon M, Owen JD, Garifullina GF, Kurihara T, Mihara H, Esaki N, Pilon-Smits EAH (2003) Enhanced selenium tolerance and accumulation in transgenic Arabidopsis thaliana expressing a mouse selenocysteine lyase. Plant Physiol 131:1250–1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilon-Smits EAH, Quinn CF (2010) Selenium metabolism in plants. In: Hell R, Mendel R (eds) Cell biology of metals and nutrients. Springer, Berlin/Heidelberg, pp 225–241

    Chapter  Google Scholar 

  • Pilon-Smits EAH, de Souza MP, Lytle CM, Shang C, Lugo T, Terry N (1998) Selenium volatilization and assimilation by hybrid poplar (Populus tremula x alba). J Exp Bot 49:1889–1892

    CAS  Google Scholar 

  • Pilon-Smits EAH, de Souza MP, Hong G, Amini A, Bravo RC, Payabyab ST, Terry N (1999a) Selenium volatilization and accumulation by twenty aquatic plant species. J Environ Qual 28:1011–1018

    Article  CAS  Google Scholar 

  • Pilon-Smits EAH, Hwang S, Lytle CM, Zhu Y, Tai JC, Bravo RC, Chen Y, Leustek T, Terry N (1999b) Overexpression of ATP sulfurylase in Indian mustard leads to increased selenite uptake, reduction, and tolerance. Plant Physiol 119:123–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prins CN, Hantzis LJ, Quinn CF, Pilon-Smits EAH (2011) Effects of selenium accumulation on reproductive functions in Brassica juncea and Stanleya pinnata. J Exp Bot 62:5633–5640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees – a review. Environ Int 29:529–540

    Article  CAS  PubMed  Google Scholar 

  • Quinn CF, Freeman JL, Galeas ML, Klamper EM, Pilon-Smits EAH (2008) The role of selenium in protecting plants against prairie dog herbivory: implications for the evolution of selenium hyperaccumulation. Oecologia 155:267–275

    Article  PubMed  Google Scholar 

  • Quinn CF, Prins CN, Freeman JL, Gross AM, Hantzis LJ, Reynolds RJB, Yang S, Covey PA, Bañuelos GS, Pickering IJ, Pilon-Smits EAH (2011a) Selenium accumulation in flowers and its effects on pollination. New Phytol 192:727–373

    Article  CAS  PubMed  Google Scholar 

  • Quinn CF, Wyant KA, Wangeline AL, Shulman J, Galeas ML, Valdez JR, Self JR, Paschke MW, Pilon-Smits EAH (2011b) Enhanced decomposition of selenium hyperaccumulator litter in a seleniferous habitat – evidence for specialist decomposers? Plant Soil 341:51–61

    Article  CAS  Google Scholar 

  • Rai PK (2008) Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: an ecosustainable approach. Int J Phytoremediation 10:133–160

    Article  CAS  Google Scholar 

  • Rani N, Dhillon KS, Dhillon SK (2005) Critical levels of selenium in different crops grown in an alkaline silty loam soil treated with selenite-Se. Plant Soil 277:367–374

    Article  CAS  Google Scholar 

  • Ravikovitch S, Margolin M (1957) Selenium in soils and plants. Ktavim 7:41–52

    CAS  Google Scholar 

  • Rayman MP, Infante HG, Sargent M (2008) Food-chain selenium and human health: spotlight on speciation. Br J Nutr 100:238–253

    CAS  PubMed  Google Scholar 

  • Robinson B, Fernandez JE, Madejon P, Maranon T, Murillo JM, Green S, Clothier B (2003) Phytoextraction: an assessment of biogeochemical and economic viability. Plant Soil 249:117–125

    Article  CAS  Google Scholar 

  • Robinson B, Green S, Chancerel B, Mills T, Clothier B (2007) Poplar for the phytomanagement of boron contaminated sites. Environ Pollut 150:225–233

    Article  CAS  PubMed  Google Scholar 

  • Robinson BH, Bañuelos G, Conesa HM, Evangelou MWH, Schulin R (2009) The phytomanagement of trace elements in soil. Crit Rev Plant Sci 28:240–266

    Article  CAS  Google Scholar 

  • Rosenfeld I, Beath OA (1964) Selenium: geobotany, biochemistry, toxicity, and nutrition. Academic Press, New York

    Google Scholar 

  • Sabogal A, Borkowski D (2007) Estado actual de la investigación sobre Ipomoea carnea: toxicidad en ganado caprino. Revista de Química (Lima, Perú: Pontificia Universidad Católica del Perú), 29–35 Jan–Dec, ISSN 1012-3946

    Google Scholar 

  • Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley BD, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–474

    Article  CAS  PubMed  Google Scholar 

  • Schrauzer GN (2000) Anticarcinogenic effects of selenium. Cell Mol Life Sci 57:1864–1873

    Article  CAS  PubMed  Google Scholar 

  • Schwarz K, Foltz CM (1957) Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. J Am Chem Soc 79:3292–3293

    Article  CAS  Google Scholar 

  • Shardendu-Salhani N, Boulyga SF, Stengel E (2003) Phytoremediation of selenium by two halophyte species in subsurface flow constructed wetland. Chemosphere 50:967–973

    Article  Google Scholar 

  • Sharma S, Bansal A, Dhillon SK, Dhillon KS (2010) Comparative effects of selenate and selenite on growth and biochemical composition of rapeseed (Brassica napus). Plant Soil 329:339–348

    Article  CAS  Google Scholar 

  • Sims JT, Johnson GV (1991) Micronutrient soil test. In: Mortvedt JJ (ed) Micronutrients in agriculture. SSSA, Madison, pp 427–476

    Google Scholar 

  • Stapleton JJ, Bañuelos GS (2009) Biomass crops can be used for biological disinfestation and remediation of soils and water. Calif Agric 63:41–46

    Article  Google Scholar 

  • Tagmount A, Berken A, Terry N (2002) An essential role of S-adenosyl-L-methionine:L-methionine-S-methyltransferase in selenium volatilization by plants: methylation of selenomethionine to selenium-methyl-L-selenium-methionine, the precursor of volatile selenium. Plant Physiol 130:847–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamaoki M, Freeman JL, Pilon-Smits EAH (2008) Cooperative ethylene and jasmonic acid signaling regulates selenite resistance in Arabidopsis thaliana. Plant Physiol 146:1219–1230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tedeschini E, Proietti P, Timorato V, D’Amato R, Nasini L, Buono DD, Businelli D, Frenguelli G (2015) Selenium as stressor and antioxidant affects pollen performance in Olea europaea. Flora 215:16–22

    Article  Google Scholar 

  • Terry N, Zayed AM (1994) Selenium volatilization by plants. In: Frankenberger WT Jr, Benson S (eds) Selenium in the environment. Marcel Dekker, New York, pp 343–369

    Google Scholar 

  • Trumble GT, Kund GS, White KK (1998) Influence of form and quantity of selenium on the development and survival of an insect herbivore. Environ Pollut 101:175–182

    Article  CAS  PubMed  Google Scholar 

  • Van Huysen T, Abdel-Ghany S, Hale KL, LeDuc D, Terry N, Pilon-Smits EAH (2003) Overexpression of cystathionine-γ-synthase in Indian mustard enhances selenium volatilization. Planta 218:71–78

    Article  PubMed  CAS  Google Scholar 

  • Vickerman DB, Trumble JT, George GN, Pickering IJ, Nichol H (2004) Selenium biotransformations in an insect ecosystem: effects of insects on phytoremediation. Environ Sci Technol 38:3581–3586

    Article  CAS  PubMed  Google Scholar 

  • Vymazal J (2010) Constructed wetlands for wastewater treatment. Water 2:530–549

    Article  CAS  Google Scholar 

  • Wang Z, Gao Y (2001) Biogeochemical cycling of selenium in Chinese environments. Appl Geochem 16:1345–1351

    Article  CAS  Google Scholar 

  • Wenzel WW, Unterbrunner R, Sommer P, Pasqualina S (2003) Chelate-assisted phytoextraction using canola (Brassica napus) in outdoors pot and lysimeter experiments. Plant Soil 249:83–96

    Article  CAS  Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization, WHO (1996) Trace elements in human nutrition and health. World Health Organization, Geneva

    Google Scholar 

  • Wu L, Chen JC, Tanji KK, Bañuelos GS (1995) Distribution and bioaccumulation of selenium in a restored upland grassland contaminated by selenium from agriculture drain water. Environ Toxicol Chem 14:733–742

    Article  CAS  Google Scholar 

  • Yuan L, Yin X, Zhu Y, Li F, Huang Y, Liu Y, Lin Z (2012) Selenium in plants and soils, and selenosis in Enshi, China: implications for selenium biofortification. In: Yin X, Yuan L (eds) Phytoremediation and biofortification. Springer, Dordrecht, pp 7–31

    Chapter  Google Scholar 

  • Zayed A, Pilon-Smits EAH, de Souza M, Lin ZQ, Terry N (2000) Remediation of selenium polluted soils and waters by phytovolatilization. In: Terry N, Bañuelos GS (eds) Phytoremediation of contaminated soil and water. CRC Press, Boca Raton, pp 61–83

    Google Scholar 

  • Zhang Y, Gladyshev VN (2009) Comparative genomics of trace elements: emerging dynamic view of trace element utilization and function. Chem Rev 109:4828–4861

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Byrne PF, Pilon-Smits EAH (2006) Mapping quantitative trait loci associated with selenate tolerance in Arabidopsis thaliana. New Phytol 170:33–42

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

G.S. Bañuelos acknowledges financial support from California State University, Fresno Agricultural Research Initiative, California Department of Water Resources Proposition 204, and OECD Cooperative Research Programs, Paris, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karaj S. Dhillon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Dhillon, K.S., Bañuelos, G.S. (2017). Overview and Prospects of Selenium Phytoremediation Approaches. In: Pilon-Smits, E., Winkel, L., Lin, ZQ. (eds) Selenium in plants. Plant Ecophysiology, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-56249-0_16

Download citation

Publish with us

Policies and ethics