Skip to main content

Selenium Biofortification

  • Chapter
  • First Online:
Selenium in plants

Part of the book series: Plant Ecophysiology ((KLEC,volume 11))

Abstract

Selenium (Se) is an essential trace element for animals and humans, and thus, low dietary intake of Se can cause health disorders in humans and animals. The Se content of food is highly dependent on soil Se bioavailability and the ability of plants to take up and accumulate Se in edible tissues. Compared to the recommended daily Se allowance value of 55 μg per person, the estimated Se intake rate from food consumption is often lower than this recommended value in many parts of the world. To overcome the Se deficiency and its related public health issues, biofortification strategies have been applied to produce Se-enriched agricultural products through alternative new agronomic practices and the development of new biotechnologies in recent decades. For example, Se-amended soil fertilizers or foliar Se applications have been used to increase Se accumulation in crops, and genetically engineered plants have also been developed to increase the uptake of Se from soil. In addition, the use of Se-laden plant materials as organic Se fertilizers represents a unique environmentally-friendly strategy to implement the goal of Se biofortification. The importance of plant and soil microbial interaction and identification of selenoamino acids in plant tissues have also been documented for the enhancement of soil and biological Se bioavailability, respectively. This chapter has explored some major mechanisms underlying the Se biofortification process and potential benefits in promoting functional agricultural production. The authors have also addressed the economic and public acceptance aspects of Se biofortification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The food additive selenium is a nutrient administered in animal feed as sodium selenite or sodium selenate or in a controlled-release sodium selenite bolus. In complete feed for chickens, swine, turkeys, sheep, cattle, and ducks at a level not to exceed 0.3 part per million.

References

  • Abrams M, Shennan C, Zasoski R, Burau R (1990) Selenomethionine uptake by wheat seedlings. Agron J 82:1127–1130

    Article  CAS  Google Scholar 

  • Ajwa HA, Bañuelos GS, Mayland HF (1998) Selenium uptake by plants from soils amended with inorganic and organic materials. J Environ Qual 27:1218–1227

    Article  CAS  Google Scholar 

  • Alfthan G, Aspila P, Ekholm P, Eurola M, Hartikainen H, Hero H, Hietaniemi V, Root T, Salminen P, Venäläinen E-R, Aro A (2011) Nationwide supplementation of sodium selenate to commercial fertilizers: history and 25-year results from the Finnish selenium monitoring programme. CAB International and Food and Agriculture Organization of the United Nations (FAO), Rome

    Google Scholar 

  • Bañuelos GS (2002) Irrigation of broccoli and canola with boron and selenium-laden effluent. J Environ Qual 31:1802–1808

    Article  PubMed  Google Scholar 

  • Bañuelos GS, Meek DW (1990) Accumulation of selenium in plants grown on selenium-treated soil. J Environ Qual 19:772–777

    Article  Google Scholar 

  • Bañuelos G, Mead R, Wu L, Beuselinck P, Akohoue S (1992) Differential selenium accumulation among forage plant species grown in soils amended with selenium-enriched plant tissue. J Soil Water Conserv 47:338–342

    Google Scholar 

  • Bañuelos GS, Pasakdee S, Finley JW (2003) Growth response and selenium and boron distribution in broccoli varieties irrigated with poor quality water. J Plant Nutr 26:2537–2549

    Article  CAS  Google Scholar 

  • Bañuelos GS, Terry N, Leduc DL, Pilon-Smits EAH, Mackey B (2005) Field trial of transgenic Indian mustard plants shows enhanced phytoremediation of selenium-contaminated sediment. Environ Sci Technol 39:1771–1777

    Article  PubMed  CAS  Google Scholar 

  • Bañuelos GS, Leduc DL, Pilon-Smits EAH, Terry N (2007) Transgenic Indian mustard overexpressing selenocysteine lyase or selenocysteine methyltransferase exhibit enhanced potential for selenium phytoremediation under field conditions. Environ Sci Technol 41:599–605

    Article  PubMed  CAS  Google Scholar 

  • Bañuelos GS, Arroyo I, Pickering IJ, Yang SI, Freeman JL (2015a) Selenium biofortification of broccoli and carrots grown in soil amended with Se-enriched hyperaccumulator Stanleya pinnata. Food Chem 166:603–608.

    Article  PubMed  CAS  Google Scholar 

  • Bañuelos GS, Tang J, Hou Y, Yin X, Yuan L (2015b) Environmental pathways and dietary intake of selenium in a selenium rich rural community in China: a natural biofortification case study. Global advances in selenium research from theory to application: proceedings of the 4th international conference on selenium in the environment and human health 2015. CRC Press Boca Raton

    Google Scholar 

  • Benes SE, Robinson PH, Cun GS (2015) Depletion of selenium in blood, liver and muscle from beef heifers previously fed forages containing high levels of selenium. Sci Total Environ 536:603–608

    Article  CAS  PubMed  Google Scholar 

  • Bhatia P, Aureli F, D’Amato M, Prakash R, Cameotra SS, Nagaraja TP, Cubadda F (2013) Selenium bioaccessibility and speciation in biofortified Pleurotus mushrooms grown on selenium-rich agricultural residues. Food Chem 140:225–230

    Article  CAS  PubMed  Google Scholar 

  • Blazina T, Sun Y, Voegelin A, Lenz M, Berg M, Winkel LHE (2014) Terrestrial selenium distribution in China is potentially linked to monsoonal climate. Nat Commun 5:4717

    Google Scholar 

  • Bouis HE, Welch RM (2010) Biofortification—a sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Sci 50:S-20–S-32

    Article  Google Scholar 

  • Bouis HE, Chassy BM, Ochanda JO (2003) Genetically modified food crops and their contribution to human nutrition and food quality. Trends Food Sci Technol 14:191–209

    Article  CAS  Google Scholar 

  • Broadley MR, White PJ, Bryson RJ, Meacham MC, Bowen HC, Johnson SE, Hawkesford MJ, McGrath SP, Zhao F-J, Breward N (2006) Biofortification of UK food crops with selenium. Proc Nutr Soc 65:169–181

    Article  CAS  PubMed  Google Scholar 

  • Broadley MR, Alcock J, Alford J, Cartwright P, Foot I, Fairweather-Tait SJ, Hart DJ, Hurst R, Knott P, McGrath SP (2010) Selenium biofortification of high-yielding winter wheat (Triticum aestivum L.) by liquid or granular Se fertilisation. Plant Soil 332:5–18

    Article  CAS  Google Scholar 

  • Businelli D, D’Amato R, Onofri A, Tedeschini E, Tei F (2015) Se-enrichment of cucumber (Cucumis sativus L.), lettuce (Lactuca sativa L.) and tomato (Solanum lycopersicum L. Karst) through fortification in pre-transplanting. Sci Hortic 197:697–704

    Article  CAS  Google Scholar 

  • Cakmak I (2008) Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil 302:1–17

    Article  CAS  Google Scholar 

  • Campbell PG, Twiss MR, Wilkinson KJ (1997) Accumulation of natural organic matter on the surfaces of living cells: implications for the interaction of toxic solutes with aquatic biota. Can J Fish Aquat Sci 54:2543–2554

    Article  CAS  Google Scholar 

  • Carvalho SM, Vasconcelos MW (2013) Producing more with less: strategies and novel technologies for plant-based food biofortification. Food Res Int 54:961–971

    Article  CAS  Google Scholar 

  • Chander K, Joergensen RG (2007) Microbial biomass and activity indices after organic substrate addition to a selenium-contaminated soil. Biol Fertil Soils 44:241–244.

    Article  CAS  Google Scholar 

  • Chilimba AD, Young SD, Black CR, Rogerson KB, Ander EL, Watts MJ, Lammel J, Broadley MR (2011) Maize grain and soil surveys reveal suboptimal dietary selenium intake is widespread in Malawi. Sci Rep 1:72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chilimba AD, Young SD, Black CR, Meacham MC, Lammel J, Broadley MR (2012a) Agronomic biofortification of maize with selenium (Se) in Malawi. Field Crop Res 125:118–128

    Article  Google Scholar 

  • Chilimba AD, Young SD, Black CR, Meacham MC, Lammel J, Broadley MR (2012b) Assessing residual availability of selenium applied to maize crops in Malawi. Field Crop Res 134:11–18.

    Article  Google Scholar 

  • Combs GF Jr (2001) Selenium in global food systems. Br J Nutr 85:517–547

    Article  CAS  PubMed  Google Scholar 

  • Combs GF Jr, Combs SB (1984) The nutritional biochemistry of selenium. Annu Rev Nutr 4:257–280.

    Article  CAS  PubMed  Google Scholar 

  • Curtin D, Hanson R, Lindley TN, Butler RC (2006) Selenium concentration in wheat (Triticum aestivum) grain as influenced by method, rate, and timing of sodium selenate application. N Z J Crop Hortic Sci 34:329–339

    Article  CAS  Google Scholar 

  • Curtin D, Hanson R, Van Der Weerden T (2008) Effect of selenium fertiliser formulation and rate of application on selenium concentrations in irrigated and dryland wheat (Triticum aestivum). N Z J Crop Hortic Sci 36:1–7

    Article  CAS  Google Scholar 

  • D’Amato R, Proietti P, Nasini L, Del Buono D, Tedeschini E, Businelli D (2014) Increase in the selenium content of extra virgin olive oil: quantitative and qualitative implications. Grasas Aceites 65:e025

    Article  CAS  Google Scholar 

  • da Silva EG, Mataveli LRV, Arruda MAZ (2013) Speciation analysis of selenium in plankton, Brazil nut and human urine samples by HPLC–ICP-MS. Talanta 110:53–57

    Article  PubMed  CAS  Google Scholar 

  • Daniels LA (1996) Selenium metabolism and bioavailability. Biol Trace Elem Res 54:185–199.

    Article  CAS  PubMed  Google Scholar 

  • de Souza MP, Chu D, Zhao M, Zayed AM, Ruzin SE, Schichnes D, Terry N (1999) Rhizosphere bacteria enhance selenium accumulation and volatilization by Indian mustard. Plant Physiol 119:565–574

    Article  PubMed  PubMed Central  Google Scholar 

  • Dhillon K, Dhillon S (2003) Distribution and management of seleniferous soils. Adv Agron 79:119–184

    Article  CAS  Google Scholar 

  • Dhillon KS, Dhillon SK (2009) Selenium concentrations of common weeds and agricultural crops grown in the seleniferous soils of northwestern India. Sci Total Environ 407:6150–6156

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Alarcon JP, Navarro-Alarcon M, Lopez-Garcia de la Serrana H, Lopez-Martinez MC (1994) Determination of selenium levels in vegetables and fruits by hydride generation atomic absorption spectrometry. J Agric Food Chem 42:2848–2851

    Article  CAS  Google Scholar 

  • Djanaguiraman M, Devi DD, Shanker AK, Sheeba JA, Bangarusamy U (2005) Selenium–an antioxidative protectant in soybean during senescence. Plant Soil 272:77–86

    Article  CAS  Google Scholar 

  • Duc M, Lefevre G, Fédoroff M (2006) Sorption of selenite ions on hematite. J Colloid Interface Sci 298:556–563

    Article  CAS  PubMed  Google Scholar 

  • Ducsay L, Lozek O (2006) Effect of selenium foliar application on its content in winter wheat grain. Plant Soil Environ 52:78

    CAS  Google Scholar 

  • Dumont E, Vanhaecke F, Cornelis R (2004) Hyphenated techniques for speciation of Se in in vitro gastrointestinal digests of Saccharomyces cerevisiae. Anal Bioanal Chem 379:504–511

    Article  CAS  PubMed  Google Scholar 

  • Dumont E, De Pauw L, Vanhaecke F, Cornelis R (2006a) Speciation of Se in Bertholletia excelsa (Brazil nut): a hard nut to crack? Food Chem 95:684–692

    Article  CAS  Google Scholar 

  • Dumont E, Ogra Y, Vanhaecke F, Suzuki KT, Cornelis R (2006b) Liquid chromatography–mass spectrometry (LC–MS): a powerful combination for selenium speciation in garlic (Allium sativum). Anal Bioanal Chem 384:1196–1206

    Article  CAS  PubMed  Google Scholar 

  • Dumont E, Vanhaecke F, Cornelis R (2006c) Selenium speciation from food source to metabolites: A critical review. Anal Bioanal Chem 385:1304–1323

    Article  CAS  PubMed  Google Scholar 

  • El Kassis E, Cathala N, Rouached H, Fourcroy P, Berthomieu P, Terry N, Davidian J-C (2007) Characterization of a selenate-resistant Arabidopsis mutant. Root growth as a potential target for selenate toxicity. Plant Physiol 143:1231–1241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ellis DR, Sors TG, Brunk DG, Albrecht C, Orser C, Lahner B, Wood KV, Harris HH, Pickering IJ, Salt DE (2004) Production of Se-methylselenocysteine in transgenic plants expressing selenocysteine methyltransferase. BMC Plant Biol 4:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Eurola M, Hietaniemi V, Kontturi M (2008) Selenium content of Finnish oats in 1997-1999: effect of cultivars and cultivation techniques. Agric Food Sci 13:46–53

    Article  Google Scholar 

  • Fairweather-Tait SJ, Collings R, Hurst R (2010) Selenium bioavailability: current knowledge and future research requirements. Am J Clin Nutr 91:1484S–1491S

    Article  CAS  PubMed  Google Scholar 

  • Fairweather-Tait SJ, Bao Y, Broadley MR, Collings R, Ford D, Hesketh JE, Hurst R (2011) Selenium in human health and disease. Antioxid Redox Signal 14:1337–1383

    Article  CAS  PubMed  Google Scholar 

  • FDA (2015) Code of federal regulations Title 21 food and drugs. In: DHHS (ed) Part 573 – food additives permitted in feed and drinking water of animals

    Google Scholar 

  • Fernández-Martínez A, Charlet L (2009) Selenium environmental cycling and bioavailability: a structural chemist point of view. Rev Environ Sci Biotechnol 8:81–110

    Article  CAS  Google Scholar 

  • Finley JW (2005) Proposed criteria for assessing the efficacy of cancer reduction by plant foods enriched in carotenoids, glucosinolates, polyphenols and selenocompounds. Ann Bot 95:1075–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finley JW, Grusak MA, Keck A-S, Gregoire BR (2004) Bioavailability of selenium from meat and broccoli as determined by retention and distribution of 75Se. Biol Trace Elem Res 99:191–209

    Article  CAS  PubMed  Google Scholar 

  • Finley JW, Sigrid-Keck A, Robbins RJ, Hintze KJ (2005) Selenium enrichment of broccoli: interactions between selenium and secondary plant compounds. J Nutr 135:1236–1238

    CAS  PubMed  Google Scholar 

  • Floor GH, Román-Ross G (2012) Selenium in volcanic environments: a review. Appl Geochem 27:517–531

    Article  CAS  Google Scholar 

  • Fordyce FM (2013) Selenium deficiency and toxicity in the environment. In: Selinus O (ed) Essentials of medical geology, Rev edn. Springer Netherlands, Dordrecht

    Google Scholar 

  • Freeman JL, Bañuelos GS (2011) Selection of salt and boron tolerant selenium hyperaccumulator Stanleya pinnata genotypes and characterization of Se phytoremediation from agricultural drainage sediments. Environ Sci Technol 45:9703–9710

    Article  CAS  PubMed  Google Scholar 

  • Freeman JL, Lindblom SD, Quinn CF, Fakra S, Marcus MA, Pilon-Smits EA (2007) Selenium accumulation protects plants from herbivory by Orthoptera via toxicity and deterrence. New Phytol 175:490–500

    Article  CAS  PubMed  Google Scholar 

  • Gerla P, Sharif M, Korom S (2011) Geochemical processes controlling the spatial distribution of selenium in soil and water, west central South Dakota, USA. Environ Earth Sci 62:1551–1560

    Article  CAS  Google Scholar 

  • Grant CA, Buckley WT, Wu R (2007) Effect of selenium fertilizer source and rate on grain yield and selenium and cadmium concentration of durum wheat. Can J Plant Sci 87:703–708

    Article  CAS  Google Scholar 

  • Hall JA, Bobe G, Hunter JK, Vorachek WR, Stewart WC, Vanegas JA, Estill CT, Mosher WD, Pirelli GJ (2013) Effect of feeding selenium-fertilized alfalfa hay on performance of weaned beef calves. PLoS One 8:e58188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hart D, Fairweather-Tait S, Broadley M, Dickinson S, Foot I, Knott P, McGrath S, Mowat H, Norman K, Scott P (2011) Selenium concentration and speciation in biofortified flour and bread: retention of selenium during grain biofortification, processing and production of Se-enriched food. Food Chem 126:1771–1778

    Article  CAS  PubMed  Google Scholar 

  • Hartfiel W, Bahners N (1988) Selenium deficiency in the Federal Republic of Germany. Biol Trace Elem Res 15:1–12

    Article  CAS  PubMed  Google Scholar 

  • Hartikainen H (2005) Biogeochemistry of selenium and its impact on food chain quality and human health. J Trace Elem Med Biol 18:309–318

    Article  CAS  PubMed  Google Scholar 

  • Hartikainen H, Xue T (1999) The promotive effect of selenium on plant growth as triggered by ultraviolet irradiation. J Environ Qual 28:1372–1375

    Article  CAS  Google Scholar 

  • Hartikainen H, Xue T, Piironen V (2000) Selenium as an anti-oxidant and pro-oxidant in ryegrass. Plant Soil 225:193–200

    Article  CAS  Google Scholar 

  • Hawkesford MJ, Davidian J-C, Grignon C (1993) Sulphate/proton cotransport in plasma-membrane vesicles isolated from roots of Brassica napus L.: increased transport in membranes isolated from sulphur-starved plants. Planta 190:297–304

    Article  CAS  Google Scholar 

  • Hawrylak-Nowak B (2013) Comparative effects of selenite and selenate on growth and selenium accumulation in lettuce plants under hydroponic conditions. Plant Growth Regul 70:149–157

    Article  CAS  Google Scholar 

  • Hintze KJ, Lardy GP, Marchello MJ, Finley JW (2002) Selenium accumulation in beef: effect of dietary selenium and geographical area of animal origin. J Agric Food Chem 50:3938–3942

    Article  CAS  PubMed  Google Scholar 

  • Hirschi KD (2009) Nutrient biofortification of food crops. Annu Rev Nutr 29:401–421

    Article  CAS  PubMed  Google Scholar 

  • Hladun KR, Parker DR, Tran KD, Trumble JT (2013) Effects of selenium accumulation on phytotoxicity, herbivory, and pollination ecology in radish (Raphanus sativus L.) Environ Pollut 172:70–75

    Article  CAS  PubMed  Google Scholar 

  • Hoefig CS, Renko K, Köhrle J, Birringer M, Schomburg L (2011) Comparison of different selenocompounds with respect to nutritional value vs. toxicity using liver cells in culture. J Nutr Biochem 22:945–955

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann FW, Hashimoto AC, Shafer LA, Dow S, Berry MJ, Hoffmann PR (2010) Dietary selenium modulates activation and differentiation of CD4+ T cells in mice through a mechanism involving cellular free thiols. J Nutr 140:1155–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horton S (2006) The economics of food fortification. J Nutr 136:1068–1071

    CAS  PubMed  Google Scholar 

  • Hsu FC, Wirtz M, Heppel SC, Bogs J, Krämer U, Khan MS, Bub A, Hell R, Rausch T (2011) Generation of Se-fortified broccoli as functional food: impact of Se fertilization on S metabolism. Plant Cell Environ 34:192–207

    Article  CAS  PubMed  Google Scholar 

  • Hu Q, Chen L, Xu J, Zhang Y, Pan G (2002) Determination of selenium concentration in rice and the effect of foliar application of Se-enriched fertiliser or sodium selenite on the selenium content of rice. J Sci Food Agric 82:869–872

    Article  CAS  Google Scholar 

  • Huysen T, Terry N, Pilon-Smits E (2004) Exploring the selenium phytoremediation potential of transgenic Indian mustard overexpressing ATP sulfurylase or cystathionine-γ-synthase. Int J Phytoremediation 6:111–118

    Article  PubMed  CAS  Google Scholar 

  • Iwashita Y, Nishi K (2004) Cultivation of selenium-enriched vegetables in large scale. Biomed Res Trace Elem 15:72–75

    CAS  Google Scholar 

  • Jardine TD, Kidd KA (2011) Low concentrations of selenium in stream food webs of eastern Canada. Sci Total Environ 409:785–791

    Article  CAS  PubMed  Google Scholar 

  • Johns T, Eyzaguirre PB (2007) Biofortification, biodiversity and diet: a search for complementary applications against poverty and malnutrition. Food Policy 32:1–24

    Article  Google Scholar 

  • Joy EJM, Ander EL, Young SD, Black CR, Watts MJ, Chilimba ADC, Chilima B, Siyame EWP, Kalimbira AA, Hurst R, Fairweather-Tait SJ, Stein AJ, Gibson RS, White PJ, Broadley MR (2014) Dietary mineral supplies in Africa. Physiol Plant 151:208–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joy EJ, Broadley MR, Young SD, Black CR, Chilimba AD, Ander EL, Barlow TS, Watts MJ (2015a) Soil type influences crop mineral composition in Malawi. Sci Total Environ 505:587–595

    Article  CAS  PubMed  Google Scholar 

  • Joy EJ, Kumssa DB, Broadley MR, Watts MJ, Young SD, Chilimba AD, Ander EL (2015b) Dietary mineral supplies in Malawi: spatial and socioeconomic assessment. BMC Nutr 1:42

    Article  Google Scholar 

  • Joy EJ, Stein AJ, Young SD, Ander EL, Watts MJ, Broadley MR (2015c) Zinc-enriched fertilisers as a potential public health intervention in Africa. Plant Soil 389:1–24

    Article  CAS  Google Scholar 

  • Jun Y, Fang W, Haibo Q, Guoxiong C, Eviatar N, Fahima T, Jianping C (2011) Natural variation in grain selenium concentration of wild barley, Hordeum spontaneum, populations from Israel. Biol Trace Elem Res 142:773–786

    Article  CAS  Google Scholar 

  • Kápolna E, Gergely V, Dernovics M, Illés A, Fodor P (2007) Fate of selenium species in sesame seeds during simulated bakery process. J Food Eng 79:494–501

    Article  CAS  Google Scholar 

  • Kápolna E, Hillestrøm PR, Laursen KH, Husted S, Larsen EH (2009) Effect of foliar application of selenium on its uptake and speciation in carrot. Food Chem 115:1357–1363

    Article  CAS  Google Scholar 

  • Kieliszek M, Błazejak S, Jedrzejczak R (2012) The capacity for binding selenium by fodder yeast strain Candida utilis ATCC 9950. Bromatol Chem Toksykol 45:628–633

    CAS  Google Scholar 

  • Kikkert J, Berkelaar E (2013) Plant uptake and translocation of inorganic and organic forms of selenium. Arch Environ Contam Toxicol 65:458–465.

    Article  CAS  PubMed  Google Scholar 

  • Kikkert J, Hale B, Berkelaar E (2013) Selenium accumulation in durum wheat and spring canola as a function of amending soils with selenite, selenate and or sulphate. Plant Soil 372:629–641.

    Article  CAS  Google Scholar 

  • Kulp TR, Pratt LM (2004) Speciation and weathering of selenium in Upper Cretaceous chalk and shale from South Dakota and Wyoming, USA. Geochim Cosmochim Acta 68:3687–3701.

    Article  CAS  Google Scholar 

  • Lavu RVS, Van De Wiele T, Pratti VL, Tack F, Du Laing G (2016) Selenium bioaccessibility in stomach, small intestine and colon: comparison between pure Se compounds, Se-enriched food crops and food supplements. Food Chem 197:382–387

    Article  CAS  PubMed  Google Scholar 

  • LeDuc DL, Tarun AS, Montes-Bayon M, Meija J, Malit MF, Wu CP, Abdel Samie M, Chiang C-Y, Tagmount A, deSouza M (2004) Overexpression of selenocysteine methyltransferase in Arabidopsis and Indian mustard increases selenium tolerance and accumulation. Plant Physiol 135:377–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LeDuc DL, Abdel Samie M, Móntes-Bayon M, Wu CP, Reisinger SJ, Terry N (2006) Overexpressing both ATP sulfurylase and selenocysteine methyltransferase enhances selenium phytoremediation traits in Indian mustard. Environ Pollut 144:70–76

    Article  CAS  PubMed  Google Scholar 

  • Li HF, McGrath SP, Zhao FJ (2008) Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytol 178:92–102

    Article  CAS  PubMed  Google Scholar 

  • Luo XM, Wei HJ, Yang CL, Xing J, Liu X, Qiao CH, Feng YM, Liu J, Liu YX, Wu Q et al (1985) Bioavailability of selenium to residents in a low-selenium area of China. Am J Clin Nutr 42:439–448

    CAS  PubMed  Google Scholar 

  • Lyi SM, Heller LI, Rutzke M, Welch RM, Kochian LV, Li L (2005) Molecular and biochemical characterization of the selenocysteine Se-methyltransferase gene and Se-methylselenocysteine synthesis in broccoli. Plant Physiol 138:409–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyons G (2010) Selenium in cereals: improving the efficiency of agronomic biofortification in the UK. Plant Soil 332:1–4

    Article  CAS  Google Scholar 

  • Lyons GH, Judson GJ, Ortiz-Monasterio I, Genc Y, Stangoulis JC, Graham RD (2005) Selenium in Australia: selenium status and biofortification of wheat for better health. J Trace Elem Med Biol 19:75–82

    Article  CAS  PubMed  Google Scholar 

  • Lyons MP, Papazyan TT, Surai PF (2007) Selenium in food chain and animal nutrition: lessons from nature – review. Asian Australas J Anim Sci 20:1135–1155.

    Article  CAS  Google Scholar 

  • Lyons GH, Genc Y, Soole K, Stangoulis J, Liu F, Graham R (2009) Selenium increases seed production in Brassica. Plant Soil 318:73–80

    Article  CAS  Google Scholar 

  • Martens IB, Cardoso BR, Hare DJ, Niedzwiecki MM, Lajolo FM, Martens A, Cozzolino SM (2015) Selenium status in preschool children receiving a Brazil nut–enriched diet. Nutrition 31:1339–1343

    Article  CAS  PubMed  Google Scholar 

  • Masscheleyn PH, Delaune RD, Patrick WH Jr (1990) Transformations of selenium as affected by sediment oxidation-reduction potential and pH. Environ Sci Technol 24:91–96

    Article  CAS  Google Scholar 

  • Mayer JE, Pfeiffer WH, Beyer P (2008) Biofortified crops to alleviate micronutrient malnutrition. Curr Opin Plant Biol 11:166–170

    Article  CAS  PubMed  Google Scholar 

  • Moser-Veillon PB, Mangels AR, Patterson KY, Veillon C (1992) Utilization of two different chemical forms of selenium during lactation using stable isotope tracers: an example of speciation in nutrition. Analyst 117:559–562

    Article  CAS  PubMed  Google Scholar 

  • Nair RM, Thavarajah P, Giri RR, Ledesma D, Yang R-Y, Hanson P, Easdown W, Hughes JA (2015) Mineral and phenolic concentrations of mungbean [Vigna radiata (L.) R. Wilczek var. radiata] grown in semi-arid tropical India. J Food Compos Anal 39:23–32

    Article  CAS  Google Scholar 

  • Navarro-Alarcon M, Cabrera-Vique C (2008) Selenium in food and the human body: a review. Sci Total Environ 400:115–141

    Article  CAS  PubMed  Google Scholar 

  • Navarro-Alarcon M, de la Serrana HL-G, Perez-Valero V, López-Martı́nez M (2002) Selenium concentrations in serum of individuals with liver diseases (cirrhosis or hepatitis): relationship with some nutritional and biochemical markers. Sci Total Environ 291:135–141

    Article  CAS  PubMed  Google Scholar 

  • Nazıroğlu M (2009) Role of selenium on calcium signaling and oxidative stress-induced molecular pathways in epilepsy. Neurochem Res 34:2181–2191

    Article  PubMed  CAS  Google Scholar 

  • Norton GJ, Deacon CM, Xiong L, Huang S, Meharg AA, Price AH (2010) Genetic mapping of the rice ionome in leaves and grain: identification of QTLs for 17 elements including arsenic, cadmium, iron and selenium. Plant Soil 329:139–153

    Article  CAS  Google Scholar 

  • Norton G, Duan G-L, Lei M, Zhu YG, Meharg A, Price A (2012) Identification of quantitative trait loci for rice grain element composition on an arsenic impacted soil: influence of flowering time on genetic loci. Ann Appl Biol 161:46–56

    Article  CAS  Google Scholar 

  • ODS (Office of Dietary Supplements) (2016) Selenium: Dietary supplement fact sheet. Health Information. US Department of Health and Human Services, National Institutes of Heath, Office of Dietary Supplements, Washington, DC

    Google Scholar 

  • Pappas AC, Karadas F, Surai PF, Wood NA, Cassey P, Bortolotti GR, Speake BK (2006) Interspecies variation in yolk selenium concentrations among eggs of free-living birds: the effect of phylogeny. J Trace Elem Med Biol 20:155–160

    Article  CAS  PubMed  Google Scholar 

  • Peak D, Sparks D (2002) Mechanisms of selenate adsorption on iron oxides and hydroxides. Environ Sci Technol 36:1460–1466

    Article  CAS  PubMed  Google Scholar 

  • Pezzarossa B, Remorini D, Gentile ML, Massai R (2012) Effects of foliar and fruit addition of sodium selenate on selenium accumulation and fruit quality. J Sci Food Agric 92:781–786

    Article  CAS  PubMed  Google Scholar 

  • Pilon-Smits EA (2012) Plant selenium metabolism—Genetic manipulation, phytotechnological applications, and ecological implications. In: Wong MH (ed) Environmental contamination: health risks and ecological restoration. CRC Press, Boca Raton

    Google Scholar 

  • Pilon-Smits EAH (2015) Selenium in plants. In: Lüttge U, Beyschlag W (eds) Progress in botany. Springer International Publishing, Cham

    Google Scholar 

  • Pilon-Smits EA, Hwang S, Lytle CM, Zhu Y, Tai JC, Bravo RC, Chen Y, Leustek T, Terry N (1999) Overexpression of ATP sulfurylase in Indian mustard leads to increased selenate uptake, reduction, and tolerance. Plant Physiol 119:123–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilon-Smits EA, Garifullina GF, Abdel-Ghany S, Kato S-I, Mihara H, Hale KL, Burkhead JL, Esaki N, Kurihara T, Pilon M (2002) Characterization of a NifS-like chloroplast protein from Arabidopsis. Implications for its role in sulfur and selenium metabolism. Plant Physiol 130:1309–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilon-Smits EA, Quinn CF, Tapken W, Malagoli M, Schiavon M (2009) Physiological functions of beneficial elements. Curr Opin Plant Biol 12:267–274

    Article  CAS  PubMed  Google Scholar 

  • Plant J, Kinniburgh D, Smedley P, Fordyce F, Klinck B (2004) Arsenic and selenium. In: Lollar BS, Holland HD, Turekian KK (eds) Treatise on geochemistry 9. Elsevier Ltd., San Diego

    Google Scholar 

  • Poblaciones MJ, Rodrigo SM, Santamaría O (2013) Evaluation of the potential of peas (Pisum sativum L.) to be used in selenium biofortification programs under Mediterranean conditions. Biol Trace Elem Res 151:132–137

    Article  CAS  PubMed  Google Scholar 

  • Poblaciones M, Rodrigo S, Santamaría O, Chen Y, McGrath S (2014) Agronomic selenium biofortification in Triticum durum under Mediterranean conditions: from grain to cooked pasta. Food Chem 146:378–384

    Article  CAS  PubMed  Google Scholar 

  • Poggi V, Arcioni A, Filippini P, Pifferi PG (2000) Foliar application of selenite and selenate to potato (Solanum tuberosum): effect of a ligand agent on selenium content of tubers. J Agric Food Chem 48:4749–4751

    Article  CAS  PubMed  Google Scholar 

  • Presser TS, Sylvester MA, Low WH (1994) Bioaccumulation of selenium from natural geologic sources in western states and its potential consequences. Environ Manag 18:423–436

    Article  Google Scholar 

  • Proietti P, Nasini L, Del Buono D, D’Amato R, Tedeschini E, Businelli D (2013) Selenium protects olive (Olea europaea L.) from drought stress. Sci Hortic 164:165–171

    Article  CAS  Google Scholar 

  • Prins CN, Hantzis LJ, Quinn CF, Pilon-Smits EA (2011) Effects of selenium accumulation on reproductive functions in Brassica juncea and Stanleya pinnata. J Exp Bot 15:5633–5640

    Google Scholar 

  • Pu Z, Ma Y, He Q, Chen G, Wang J, Liu Y, Jiang Q, Wei L, Dai S, Wei Y, Zheng Y (2014) Quantitative trait loci associated with micronutrient concentrations in two recombinant inbred wheat lines. J Integr Agric 13:2322–2329

    Article  CAS  Google Scholar 

  • Qin S, Gao J, Huang K (2007) Effects of different selenium sources on tissue selenium concentrations, blood GSH-Px activities and plasma interleukin levels in finishing lambs. Biol Trace Elem Res 116:91–102

    Article  CAS  PubMed  Google Scholar 

  • Quijano M, Moreno P, Gutiérrez AM, Pérez-Conde MC, Camara C (2000) Selenium speciation in animal tissues after enzymatic digestion by high-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry. J Mass Spectrom 35:878–884

    Article  CAS  PubMed  Google Scholar 

  • Ralston NV, Ralston CR, Blackwell JL, Raymond LJ (2008) Dietary and tissue selenium in relation to methylmercury toxicity. Neurotoxicology 29:802–811

    Article  CAS  PubMed  Google Scholar 

  • Ramamurthy RK, Jedlicka J, Graef GL, Waters BM (2014) Identification of new QTLs for seed mineral, cysteine, and methionine concentrations in soybean [Glycine max (L.) Merr.] Mol Breed 34:431–445

    Article  CAS  Google Scholar 

  • Rayman MP (2000) The importance of selenium to human health. Lancet 356:233–241

    Article  CAS  PubMed  Google Scholar 

  • Rayman MP (2008) Food-chain selenium and human health: emphasis on intake. Br J Nutr 100:254–268

    CAS  PubMed  Google Scholar 

  • Rayman MP (2012) Selenium and human health. Lancet 379:1256–1268

    Article  CAS  PubMed  Google Scholar 

  • Rayman MP, Infante HG, Sargent M (2008) Food-chain selenium and human health: spotlight on speciation. Br J Nutr 100:238–253

    CAS  PubMed  Google Scholar 

  • Reilly C (1996) Selenium in food and health. Blackie Academic & Professional, London

    Book  Google Scholar 

  • Ríos J, Rosales M, Blasco B, Cervilla L, Romero L, Ruiz J (2008) Biofortification of Se and induction of the antioxidant capacity in lettuce plants. Sci Hortic 116:248–255

    Article  CAS  Google Scholar 

  • Ríos J, Blasco B, Cervilla L, Rosales M, Sanchez-Rodriguez E, Romero L, Ruiz J (2009) Production and detoxification of H2O2 in lettuce plants exposed to selenium. Ann Appl Biol 154:107–116

    Article  CAS  Google Scholar 

  • Rodríguez LH, Morales DA, Rodríguez ER, Romero CD (2011) Minerals and trace elements in a collection of wheat landraces from the Canary Islands. J Food Compos Anal 24:1081–1090

    Article  CAS  Google Scholar 

  • Rongzhi Y, Ru W, Wentao X, Jun Y, Gang Z, Fahima T, Jianping C (2013) QTL location and analysis of selenium content in tetraploid wheat grain. Guizhou Agric Sci 10:1–4

    Google Scholar 

  • Ros G, van Rotterdam A, Bussink D, Bindraban P (2016) Selenium fertilization strategies for bio-fortification of food: an agro-ecosystem approach. Plant Soil 1:99–112

    Google Scholar 

  • Saltzman A, Birol E, Bouis HE, Boy E, De Moura FF, Islam Y, Pfeiffer WH (2013) Biofortification: progress toward a more nourishing future. Global Food Secur 2:9–17.

    Article  Google Scholar 

  • Schomburg L, Köhrle J (2008) On the importance of selenium and iodine metabolism for thyroid hormone biosynthesis and human health. Mol Nutr Food Res 52:1235–1246

    Article  CAS  PubMed  Google Scholar 

  • Seby F, Potin-Gautier M, Giffaut E, Borge G, Donard O (2001) A critical review of thermodynamic data for selenium species at 25 °C. Chem Geol 171:173–194

    Article  CAS  Google Scholar 

  • Seiler RL, Skorupa JP, Peltz LA (1999) Areas susceptible to irrigation-induced selenium contamination of water and biota in the Western United States. US Geol Surv Circ 1180:1–44

    Google Scholar 

  • Serafin Muñoz AH, Kubachka K, Wrobel K, Gutierrez Corona JF, Yathavakilla SK, Caruso JA, Wrobel K (2006) Se-enriched mycelia of Pleurotus ostreatus: distribution of selenium in cell walls and cell membranes/cytosol. J Agric Food Chem 54:3440–3444

    Article  PubMed  CAS  Google Scholar 

  • Shao S, Zheng B (2008) The biogeochemistry of selenium in Sunan grassland, Gansu, Northwest China, casts doubt on the belief that Marco Polo reported selenosis for the first time in history. Environ Geochem Health 30:307–314

    Article  CAS  PubMed  Google Scholar 

  • Sharma N, Prakash R, Srivastava A, Sadana U, Acharya R, Prakash NT, Reddy AR (2009) Profile of selenium in soil and crops in seleniferous area of Punjab, India by neutron activation analysis. J Radioanal Nucl Chem 281:59–62

    Article  CAS  Google Scholar 

  • Shiobara Y, Yoshida T, Suzuki KT (1998) Effects of dietary selenium species on Se concentrations in hair, blood, and urine. Toxicol Appl Pharmacol 152:309–314

    Article  CAS  PubMed  Google Scholar 

  • Shrestha B, Lipe S, Johnson K, Zhang T, Retzlaff W, Lin Z-Q (2006) Soil hydraulic manipulation and organic amendment for the enhancement of selenium volatilization in a soil–pickleweed system. Plant Soil 288:189–196

    Article  CAS  Google Scholar 

  • Shrift A, Ulrich JM (1969) Transport of selenate and selenite into Astragalus roots. Plant Physiol 44:893–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slekovec M, Goessler W (2005) Accumulation of selenium in natural plants and selenium supplemented vegetable and selenium speciation by HPLC-ICPMS. Chem Speciat Bioavailab 17:63–73

    Article  CAS  Google Scholar 

  • Smrkolj P, Stibilj V, Kreft I, Germ M (2006) Selenium species in buckwheat cultivated with foliar addition of Se (VI) and various levels of UV-B radiation. Food Chem 96:675–681

    Article  CAS  Google Scholar 

  • Sors TG, Ellis DR, Na GN, Lahner B, Lee S, Leustek T, Pickering IJ, Salt DE (2005) Analysis of sulfur and selenium assimilation in Astragalus plants with varying capacities to accumulate selenium. Plant J 42:785–797

    Article  CAS  PubMed  Google Scholar 

  • Steinnes E (2009) Soils and geomedicine. Environ Geochem Health 31:523–535

    Article  CAS  PubMed  Google Scholar 

  • Stroud J, Broadley M, Foot I, Fairweather-Tait S, Hart D, Hurst R, Knott P, Mowat H, Norman K, Scott P (2010a) Soil factors affecting selenium concentration in wheat grain and the fate and speciation of Se fertilisers applied to soil. Plant Soil 332:19–30

    Article  CAS  Google Scholar 

  • Stroud J, Li H, Lopez-Bellido F, Broadley M, Foot I, Fairweather-Tait S, Hart D, Hurst R, Knott P, Mowat H (2010b) Impact of sulphur fertilisation on crop response to selenium fertilisation. Plant Soil 332:31–40

    Article  CAS  Google Scholar 

  • Swanson C, Patterson B, Levander O, Veillon C, Taylor P, Helzlsouer K, McAdam P, Zech L (1991) Human [74Se] selenomethionine metabolism: a kinetic model. Am J Clin Nutr 54:917–926

    CAS  PubMed  Google Scholar 

  • Terry N, Zayed A, De Souza M, Tarun A (2000) Selenium in higher plants. Annu Rev Plant Biol 51:401–432

    Article  CAS  Google Scholar 

  • Thiry C, Schneider Y-J, Pussemier L, De Temmerman L, Ruttens A (2013) Selenium bioaccessibility and bioavailability in Se-enriched food supplements. Biol Trace Elem Res 152:152–160

    Article  CAS  PubMed  Google Scholar 

  • Toler HD, Charron CS, Sams CE, Randle WR (2007) Selenium increases sulfur uptake and regulates glucosinolate metabolism in rapid-cycling Brassica oleracea. J Am Soc Hortic Sci 132:14–19

    CAS  Google Scholar 

  • Turakainen M, Hartikainen H, Seppänen MM (2004) Effects of selenium treatments on potato (Solanum tuberosum L.) growth and concentrations of soluble sugars and starch. J Agric Food Chem 52:5378–5382

    Article  CAS  PubMed  Google Scholar 

  • Ulrich JM, Shrift A (1968) Selenium absorption by excised Astragalus roots. Plant Physiol 43:14–20

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Hoewyk D, Takahashi H, Inoue E, Hess A, Tamaoki M, Pilon-Smits EA (2008) Transcriptome analyses give insights into selenium-stress responses and selenium tolerance mechanisms in Arabidopsis. Physiol Plant 132:236–253

    PubMed  Google Scholar 

  • Van Metre DC, Callan RJ (2001) Selenium and vitamin E. Vet Clin N Am Food Anim Pract 17: 373–402, vii–viii

    Google Scholar 

  • Vonderheide AP, Wrobel K, Kannamkumarath SS, B’Hymer C, Montes-Bayón M, Ponce de León C, Caruso JA (2002) Characterization of selenium species in Brazil nuts by HPLC-ICP-MS and ES-MS. J Agric Food Chem 50:5722–5728

    Article  CAS  PubMed  Google Scholar 

  • Vuori E, Vääriskoski J, Hartikainen H, Vakkilainen P, Kumpulainen J, Niinivaara K (1989) Sorption of selenate by Finnish agricultural soils. Agric Ecosyst Environ 25:111–118

    Article  CAS  Google Scholar 

  • Wang Z, Gao Y (2001) Biogeochemical cycling of selenium in Chinese environments. Appl Geochem 16:1345–1351

    Article  CAS  Google Scholar 

  • Wen H, Carignan J (2007) Reviews on atmospheric selenium: emissions, speciation and fate. Atmos Environ 41:7151–7165

    Article  CAS  Google Scholar 

  • White PJ (2015) Selenium accumulation by plants. Ann Bot 117:217–235.

    PubMed  PubMed Central  Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84

    Article  CAS  PubMed  Google Scholar 

  • White P, Bowen H, Parmaguru P, Fritz M, Spracklen W, Spiby R, Meacham M, Mead A, Harriman M, Trueman L (2004) Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. J Exp Bot 55:1927–1937

    Article  CAS  PubMed  Google Scholar 

  • Winkel LH, Trang PTK, Lan VM, Stengel C, Amini M, Ha NT, Viet PH, Berg M (2011) Arsenic pollution of groundwater in Vietnam exacerbated by deep aquifer exploitation for more than a century. Proc Natl Acad Sci 108:1246–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winkel LH, Vriens B, Jones GD, Schneider LS, Pilon-Smits E, Bañuelos GS (2015) Selenium cycling across soil-plant-atmosphere interfaces: a critical review. Nutrients 7:4199–4239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winkler J (2011) Biofortification: improving the nutritional quality of staple crops. In: Pasternak C (ed) Access not excess. Smith-Gordon Publishing, London

    Google Scholar 

  • Wood SM, Beckham C, Yosioka A, Darban H, Watson RR (2000) β-Carotene and selenium supplementation enhances immune response in aged humans. Intern Med 2:85–92

    CAS  Google Scholar 

  • Wu Z, Bañuelos GS, Lin Z-Q, Liu Y, Yuan L, Yin X, Li M (2015) Biofortification and phytoremediation of selenium in China. Front Plant Sci 6:136

    PubMed  PubMed Central  Google Scholar 

  • Xue T, Hartikainen H (2008) Association of antioxidative enzymes with the synergistic effect of selenium and UV irradiation in enhancing plant growth. Agric Food Sci 9:177–186

    Google Scholar 

  • Yang F, Chen L, Hu Q, Pan G (2003) Effect of the application of selenium on selenium content of soybean and its products. Biol Trace Elem Res 93:249–256

    Article  CAS  PubMed  Google Scholar 

  • Yang SI, George GN, Lawrence JR, Kaminskyj SG, Dynes JJ, Lai B, Pickering IJ (2016) Multispecies biofilms transform selenium oxyanions into elemental selenium particles: studies using combined synchrotron X-ray fluorescence imaging and scanning transmission X-ray microscopy. Environ Sci Technol 50(19):10343–10350

    Article  CAS  PubMed  Google Scholar 

  • Yasin M, El Mehdawi AF, Jahn CE, Anwar A, Turner MF, Faisal M, Pilon-Smits EA (2015) Seleniferous soils as a source for production of selenium-enriched foods and potential of bacteria to enhance plant selenium uptake. Plant Soil 386:385–394

    Article  CAS  Google Scholar 

  • Yonghua L, Wuyi W, Kunli L, Hairong L (2008) Environmental behaviors of selenium in soil of typical selenosis area, China. J Environ Sci 20:859–864

    Article  Google Scholar 

  • Zeng H, Combs GF (2008) Selenium as an anticancer nutrient: Roles in cell proliferation and tumor cell invasion. J Nutr Biochem 19:1–7

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Shi W, Wang X, Zhou X (2006) Genotypic differences in selenium accumulation in rice seedlings at early growth stage and analysis of dominant factors influencing selenium content in rice seeds. J Plant Nutr 29:1601–1618

    Article  CAS  Google Scholar 

  • Zhu J, Wang N, Li S, Li L, Su H, Liu C (2008) Distribution and transport of selenium in Yutangba, China: Impact of human activities. Sci Total Environ 392:252–261

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The senior author acknowledges the financial support from California State University Fresno Agriculture Research Initiative to conduct the multitude of studies related to selenium-enriched agricultural products.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary S. Bañuelos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bañuelos, G.S., Lin, ZQ., Broadley, M. (2017). Selenium Biofortification. In: Pilon-Smits, E., Winkel, L., Lin, ZQ. (eds) Selenium in plants. Plant Ecophysiology, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-56249-0_14

Download citation

Publish with us

Policies and ethics