Skip to main content

Adverse Outcome Pathways to Support the Assessment of Chemical Mixtures

  • Chapter
  • First Online:
Chemical Mixtures and Combined Chemical and Nonchemical Stressors

Abstract

Due to the ever-increasing number of chemicals coming to market, and the cost of performing traditional in vivo studies, there has been a shift toward the use of less costly alternative techniques. The adverse outcome pathway (AOP) concept has emerged as a scaffold for organizing mechanistic information from these methods. Two main elements – key events (KEs) and key event relationships (KERs) – are utilized to describe the underlying mechanism outlined by the AOP. Each KE depicts the measureable changes in the state of the biological system at each level of organization that are essential for the progression along the pathway. The KERs, meanwhile, contain the biological information that connects each of the KEs. This chapter covers some of the potential applications for AOPs when performing risk assessment of chemical mixtures. The structure of the AOP provides much more precision when considering mechanistic data in a mixtures assessment. The use of this concept provides a means to allow more specificity when deciding whether to use dose addition, independent action or integrated addition risk assessment methodologies. Furthermore, AOPs enable novel approaches for determining chemical groups and how they may be utilized within mixtures risk assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 239.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADME:

Absorption, distribution, metabolism, and elimination

AO:

Adverse outcome

AOP:

Adverse outcome pathway

KE:

Key event

KER:

Key event relationship

MIE:

Molecular initiating event

References

  • Ankley, G.T., R.S. Bennett, R.J. Erickson, D.J. Hoff, M.W. Hornung, R.D. Johnson, D.R. Mount, J.W. Nichols, C.L. Russom, P.K. Schmieder, J.A. Serrrano, J.E. Tietge, and D.L. Villeneuve. 2010. Adverse outcome pathways: A conceptual framework to support ecotoxicology research and risk assessment. Environmental Toxicology and Chemistry 29: 730–741.

    Article  CAS  PubMed  Google Scholar 

  • Asturiol, D., and A. Worth. 2011. The use of chemical reactivity assays in toxicity prediction. JRC Scientific and Technical Reports.

    Google Scholar 

  • Becker, R.A., G.T. Ankley, S.W. Edwards, S.W. Kennedy, I. Linkov, B. Meek, M. Sachana, H. Segner, B. Van Der Burg, D.L. Villeneuve, H. Watanabe, and T.S. Barton-Maclaren. 2015a. Increasing scientific confidence in adverse outcome pathways: Application of tailored Bradford-Hill considerations for evaluating weight of evidence. Regulatory Toxicology and Pharmacology 72: 514–537.

    Article  PubMed  Google Scholar 

  • Becker, R.A., G. Patlewicz, T.W. Simon, J.C. Rowlands, and R.A. Budinsky. 2015b. The adverse outcome pathway for rodent liver tumor promotion by sustained activation of the aryl hydrocarbon receptor. Regulatory Toxicology and Pharmacology 73: 172–190.

    Article  CAS  PubMed  Google Scholar 

  • Belair, C.D., R.E. Peterson, and W. Heideman. 2001. Disruption of erythropoiesis by dioxin in the zebrafish. Developmental Dynamics 222: 581–594.

    Article  CAS  PubMed  Google Scholar 

  • Bradford Hill, A. 1965. The environment and disease: Association or causation? Proceedings of the Royal Society of Medicine 58: 295–300.

    Google Scholar 

  • Cronin, M.T.D. 2013. An introduction to chemical grouping, categories and read-across to predict toxicity. In Chemical toxicity prediction: Category formation and read-across, ed. M.T.D. Cronin, J.C. Madden, S.J. Enoch, and D.W. Roberts. Cambridge, UK: Royal Society of Chemistry.

    Google Scholar 

  • EC. 2003. Directive 2003/15/EC of the European Parliament and of the Council (Cosmetics Directive 7th Amendment). Official Journal of the European Union.

    Google Scholar 

  • ———. 2006a. Corrigenda of Regulation (EC) No 1907/2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH). Official Journal of the European Union.

    Google Scholar 

  • ———. 2006b. Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH). Official Journal of the European Union.

    Google Scholar 

  • ECHA. 2008. Guidance on information requirements and chemical safety assessment. Chapter R.6: QSARs and grouping of chemicals.

    Google Scholar 

  • ———. 2009. Practical guide 6: How to report read-across and categories. Helsinki: ECHA.

    Google Scholar 

  • Edwards, S.W., T. Yu-Mei, D.L. Villeneuve, M.E. Meek, and C.A. Mcqueen. 2016. Adverse outcome pathways – organizing toxicological information to improve decision making. The Journal of Pharmacology and Experimental Therapeutics 356: 170–181.

    Google Scholar 

  • Enoch, S.J. 2010. Chemical category formation and read-across for the prediction of toxicity. In Recent advances in QSAR studies: Methods and applications, ed. T. Puzyn, J. Leszczynski, and M.T.D. Cronin. Dordrecht/Heidelberg/London/New York: Springer.

    Google Scholar 

  • Enoch, S.J., and D.W. Roberts. 2013. Approaches for grouping chemicals into categories. In Chemical toxicity prediction: Category formation and read-across, ed. M.T.D. Cronin. Cambridge, UK: Royal Society of Chemistry.

    Google Scholar 

  • Enoch, S.J., J.C. Madden, and M.T.D. Cronin. 2008. Identification of mechanisms of toxic action for skin sensitisation using a SMARTS pattern based approach. SAR and QSAR in Environmental Research 19: 555–578.

    Article  CAS  PubMed  Google Scholar 

  • Enoch, S.J., K.R. Przybylak, and M.T.D. Cronin. 2013. Category formation case studies. In Chemical toxicity prediction: Category formation and read-across, ed. M.T.D. Cronin, J.C. Madden, S.J. Enoch, and D.W. Roberts. Cambridge, UK: Royal Society of Chemistry.

    Google Scholar 

  • Fisher, J.S. 2004. Environmental anti-androgens and male reproductive health: Focus on phthalates and testicular dysgenesis syndrome. Reproduction 127: 305–315.

    Article  CAS  PubMed  Google Scholar 

  • Fleischer, M. 2007. Testing costs and testing capacity according to the REACH requirements – results of a survey of independent and corporate GLP laboratories in the EU and Switzerland. Journal of Business Chemistry 4: 96–114.

    Google Scholar 

  • Garcia-Reyero, N. 2015. Are adverse outcome pathways here to stay? Environmental Science and Technology 49: 3–9.

    Article  CAS  PubMed  Google Scholar 

  • Gerberick, F., M. Aleksic, D. Basketter, S. Casati, A.-T. Karlberg, P. Kern, I. Kimber, J.P. Lepottevin, A. Natsch, J.M. Ovigne, C. Rovida, H. Sakaguchi, and T.W. Schultz. 2008. Chemical reactivity measurement and the predictive identification of skin sentisers. ALTA 36: 215–242.

    CAS  Google Scholar 

  • Groh, K.J., R.N. Carvalho, J.K. Chipman, N.D. Denslow, M. Halder, C.A. Murphy, D. Roelofs, A. Rolaki, K. Schirmer, and K.H. Watanabe. 2015a. Development and application of the adverse outcome pathway framework for understanding and predicting chronic toxicity: I. Challenges and research needs in ecotoxicology. Chemosphere 120: 764–777.

    Article  CAS  PubMed  Google Scholar 

  • ———. 2015b. Development and application of the adverse outcome pathway framework for understanding and predicting chronic toxicity: II. A focus on growth impairment in fish. Chemosphere 120: 778–792.

    Article  CAS  PubMed  Google Scholar 

  • Gutsell, S., and P. Russell. 2013. The role of chemistry in developing understanding of adverse outcome pathways and their application in risk assessment. Toxicology Research 2: 299.

    Article  CAS  Google Scholar 

  • Henry, T.R., J.M. Spitsbergen, M.W. HornunG, C.C. Abnet, and R.E. Peterson. 1997. Early life stage toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin in zebrafish (Danrio rerio). Toxicology and Applied Pharmacology 142: 56–68.

    Article  CAS  PubMed  Google Scholar 

  • Jaworska, J., and N. Nikolova-Jeliazkova. 2007. How can structural similarity analysis help in category formation? SAR and QSAR in Environmental Research 18: 195–207.

    Article  CAS  PubMed  Google Scholar 

  • Kadenbach, B. 2003. Intrinsic and extrinsic uncoupling of oxidative phosphorylation. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1604: 77–94.

    Article  CAS  Google Scholar 

  • King-Heiden, T.C., V. Mehta, K.M. Xiong, K.A. Lanham, D.S. Antkiewicz, A. Ganser, W. Heideman, and R.E. PetersoN. 2012. Reproductive and developmental toxicity of dioxin in fish. Molecular and Cellular Endocrinology 354: 121–138.

    Article  CAS  PubMed  Google Scholar 

  • Knapen, D., L. Vergauwen, D.L. Villeneuve, and G.T. Ankley. 2015. The potential of AOP networks for reproductive and developmental toxicity assay development. Reproductive Toxicology 56: 52–55.

    Article  CAS  PubMed  Google Scholar 

  • Landesmann, B., M. Goumenou, S. Munn, and M. Whelan. 2012. Description of prototype modes-of-action related to repeated dose toxicity. JRC Scientific and Policy Report 75689.

    Google Scholar 

  • Leonard, J.A., Y.-M. Tan, M. Gilbert, K. Isaacs, and H. El-Masri. 2016. Estimating margin of exposure to thyroid peroxidase inhibitors using high-throughput in vitro data, high-throughput exposure modeling, and physiologically-based pharmacokinetic/Pharmacodynamic modeling. Toxicological Sciences 151(1): 57–70.

    Google Scholar 

  • Meek, M.E.B., C.M. Palermo, A.N. Bachman, C.M. North, and R.J. Lewis. 2014. Mode of action human relevance (species concordance) framework: Evolution of the Bradford Hill considerations and comparative analysis of weight of evidence. Journal of Applied Toxicology 34: 595–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mylchreest, E., R.C. Cattley, and P.M.D. Foster. 1998. Male reproductive tract malformations in rats following gestational and lactational exposure to Di(n-butyl) phthalate: An antiandrogenic mechanism? Toxicological Sciences 43: 47–60.

    Article  CAS  PubMed  Google Scholar 

  • Naven, R.T., R. Swiss, J. Klug-Mcleod, Y. Will, and N. GreenE. 2013. The development of structure-activity relationships for mitochondrial dysfunction: Uncoupling of oxidative phosphorylation. Toxicological Sciences 131: 271–278.

    Article  CAS  PubMed  Google Scholar 

  • Nelms, M.D., G. Ates, J.C. Madden, M. Vinken, M.T. Cronin, V. Rogiers, and S.J. Enoch. 2015a. Proposal of an in silico profiler for categorisation of repeat dose toxicity data of hair dyes. Archives of Toxicology 89: 733–741.

    Article  CAS  PubMed  Google Scholar 

  • Nelms, M.D., C.L. Mellor, M.T. Cronin, J.C. Madden, and S.J. Enoch. 2015b. Development of an in Silico Profiler for Mitochondrial Toxicity. Chemical Research in Toxicology 28: 1891–1902.

    Article  CAS  PubMed  Google Scholar 

  • NRC. 2007. Toxicity testing in the 21st century: A vision and a strategy. Washington, DC: The National Academies Press.

    Google Scholar 

  • ———. 2008. Phthalates and cumulative risk assessment: The tasks ahead. Washington D.C: The National Academies Press.

    Google Scholar 

  • OECD. 2011. Report of the workshop on using mechanistic information on forming chemical categories. Series on testing and assessment No. 138. ENV/JM/MONO(2011)8.

    Google Scholar 

  • ———. 2012. The Adverse Outcome Pathway for skin sensitisation initiated by covalent binding to proteins part I: scientific evidence. Series on testing and assessment No. 168. ENV/JM/MONO(2012)10/PART1.

    Google Scholar 

  • ———. 2013. Guidance document on developing and assessing Adverse Outcome Pathways. Series on testing and assessment No. 184. ENV/JM/MONO(2013)6.

    Google Scholar 

  • ———. 2014. Users’ handbook supplement to the guidance document for developing and assessing AOPs.

    Google Scholar 

  • ———. 2015. Report of the workshop on a framework for the development and use of Intergrated Approaches to Testing and Assessment. Environment Directorate Joint Meeting of the Chemicals Committee and the Working Party on Chemicals. Paris: Organisation for Economic Co-operation and Development.

    Google Scholar 

  • Oki, N.O., M.D. Nelms, S.M. Bell, H.M. Mortensen, and S.W. Edwards. 2016. Accelerating adverse outcome pathway development using publicly available data sources. Current Environmental Health Reports 3(1): 53–63.

    Google Scholar 

  • Olmstead, A.W., and G.A. Leblanc. 2005. Toxicity assessment of environmentally relevant pollutant mixtures using a heuristic model. Integrated Environmental Assessment and Management 1: 114–122.

    Article  CAS  PubMed  Google Scholar 

  • Perkins, E.J., P. Antczak, L. Burgoon, F. Falciani, S. Gutsell, G. Hodges, A. Kienzler, D. Knapen, M. Mcbride, and C. Willett. 2015. Adverse outcome pathways for regulatory applications: Examination of four case studies with different degrees of completeness and scientific confidence. Toxicological Sciences 148: 14–25.

    Article  CAS  PubMed  Google Scholar 

  • Peterson, R.E., H.M. Theobald, and G.L. Kimmel. 1993. Developmental and reproductive toxicity of dioxins and related compounds: Cross-species comparisons. Critical Reviews in Toxicology 23: 283–335.

    Article  CAS  PubMed  Google Scholar 

  • Przybylak, K.R., and T.W. Schultz. 2013. Informing chemical categories through the development of adverse outcome pathways. In Chemical toxicity prediction: Category formation and read-across, ed. M.T.D. Cronin, J.C. Madden, S.J. Enoch, and D.W. Roberts. Cambridge, UK: Royal Society of Chemistry.

    Google Scholar 

  • Rider, C.V., and G.A. Leblanc. 2005. An integrated addition and interaction model for assessing toxicity of chemical mixtures. Toxicological Sciences 87: 520–528.

    Article  CAS  PubMed  Google Scholar 

  • Rider, C.V., and J.E. Simmons. 2015. Risk assessment strategies and techniques for combined exposures. In Toxicological risk assessment for beginners, ed. J.A. Torres and S. BobsT. Heidelberg/New York/Dordrecht/London: Springer International Publishing.

    Google Scholar 

  • Roberts, D.W., A.O. Aptula, and G. PatlewicZ. 2006. Mechanistic applicability domains for non-animal based predictions of toxicological endpoints. QSAR analysis of the Schiff base applicability domain for skin sensitisation. Chemical Research in Toxicology 19: 1228–1233.

    Article  CAS  PubMed  Google Scholar 

  • Schultz, T.W. 2010. Adverse outcome pathways: A way of linking chemical structure to in vivo toxicological hazards. In In silico toxicology: Principles and applications, ed. M.T.D. Cronin and J.C. Madden. Cambridge, UK: Royal Society of Chemistry.

    Google Scholar 

  • Spycher, S., P. Smejtek, T.I. Netzeva, and B.I. Escher. 2008. Towards a class-independent quantitative structure-activity relationship model for uncouplers of oxidative phosphorylation. Chemical Research in Toxicology 21: 911–927.

    Article  CAS  PubMed  Google Scholar 

  • Stoddart, G., and J. Brown. 2014. A campaign to end animal testing: Introducing the PETA international science consortium ltd. ATLA 42: 387–393.

    PubMed  Google Scholar 

  • Taylor, K., D.J. Andrew, and L. Rego. 2014. The added value of the 90-day repeated dose oral toxicity test for industrial chemicals with a low (sub)acute toxicity profile in a high quality dataset. Regulatory Toxicology and Pharmacology 69: 320–332.

    Article  CAS  PubMed  Google Scholar 

  • Tollefsen, K.E., S. Scholz, M.T. Cronin, S.W. Edwards, J. De Knecht, K. Crofton, N. Garcia-Reyero, T. Hartung, A. Worth, and G. Patlewicz. 2014. Applying Adverse Outcome Pathways (AOPs) to support Integrated Approaches to Testing and Assessment (IATA). Regulatory Toxicology and Pharmacology 70: 629–640.

    Article  PubMed  Google Scholar 

  • U.S. EPA. 2000. Supplementary guidance for conducting health risk assessment of chemical mixtures. Risk Assessment Forum. EPA/630/R-00/002.

    Google Scholar 

  • Villeneuve, D.L., D. Crump, N. Garcia-Reyero, M. Hecker, T.H. HutchinsoN, C.A. Lalone, B. Landesmann, T. Lettieri, S. Munn, M. NepelskA, M.A. Ottinger, L. VergauweN, and M. Whelan. 2014a. Adverse outcome pathway (AOP) development I: Strategies and principles. Toxicological Sciences 142: 312–320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ———. 2014b. Adverse outcome pathway development II: Best practices. Toxicological Sciences 142: 321–330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinken, M. 2013. The adverse outcome pathway concept: A pragmatic tool in toxicology. Toxicology 312: 158–165.

    Article  CAS  PubMed  Google Scholar 

  • Vinken, M., B. Landesmann, M. Goumenou, S. Vinken, I. Shah, H. Jaeschke, C. Willett, M. Whelan, and V. Rogiers. 2013. Development of an adverse outcome pathway from drug-mediated bile salt export pump inhibition to cholestatic liver injury. Toxicological Sciences 136: 97–106.

    Article  CAS  PubMed  Google Scholar 

  • Walker, M.K., and R.E. Peterson. 1994. Aquatic toxicity of dioxins and related chemicals. In Dioxins and Health, ed. A. Schecter. New York: Plenum.

    Google Scholar 

  • Wolf, C.J., C. Lambright, P. Mann, M. Price, R.L. Cooper, J. Ostby, and L.E.J. Gray. 1999. Administration of potentially antiandrogenic pesticides (procymidone, linuron, iprodione, chlozolinate, p,p'-DDE, and ketoconazole) and toxic substances (dibutyl- and diethylhexyl phthalate, PCB 169, and ethane dimethane sulphonate) during sexual differentiation produces diverse profiles of reproductive malformations in the male rat. Toxicology and Industrial Health 15: 94–118.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

M.D.N. was supported by an appointment to the Research Participation Program of the U.S. Environmental Protection Agency, Office of Research and Development, administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and the U.S. EPA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane Ellen Simmons .

Editor information

Editors and Affiliations

Additional information

Disclaimer The views expressed in this chapter are those of the authors and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nelms, M.D., Simmons, J.E., Edwards, S.W. (2018). Adverse Outcome Pathways to Support the Assessment of Chemical Mixtures. In: Rider, C., Simmons, J. (eds) Chemical Mixtures and Combined Chemical and Nonchemical Stressors. Springer, Cham. https://doi.org/10.1007/978-3-319-56234-6_7

Download citation

Publish with us

Policies and ethics