Fatigue Initiation

Chapter
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 236)

Abstract

This chapter explains how fatigue initiation in FMLs can be evaluated and predicted, assuming that the phenomenon primarily affects the fatigue property of the metal constituents. It is illustrated how definition of initiation in the theory enables the utilization of Wöhler failure life curves obtained for the monolithic metal, in combination with stress concentration factors and laminated plate theory. The accuracy of prediction is discussed in relation to the match between the conditions for the adopted Wöhler curves and the predicted conditions. In the end, the theory is related to the application of mechanically fastened joints, where a combination of tension and bending impose different fatigue initiation lives in each individual metal layer.

Keywords

Fatigue Life Peak Stress Stress Concentration Factor Nominal Stress Notch Root 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Schijve J (2009) Fatigue of structures and materials. Springer, B.VCrossRefMATHGoogle Scholar
  2. 2.
    Alderliesten RC (2007) Analytical prediction model for fatigue crack propagation and delamination growth in GLARE. Int J Fatigue 29(4):628–646CrossRefGoogle Scholar
  3. 3.
    Homan JJ (2006) Fatigue initiation in fibre metal laminates. Int J Fatigue 28:366–374CrossRefGoogle Scholar
  4. 4.
    Schijve J (1967) Significance of fatigue cracks in micro-range and macro-range. Fatigue Crack Propag ASTM-STP 415:415Google Scholar
  5. 5.
    Papakyriacou M, Schijve J, Stanzl-Tschegg SE (1997) Fatigue crack growth behaviour of fibre-metal laminate GLARE-1 and metal Laminate 7475 with different blunt notches. Fatigue Fract Eng Mater Struct 20:1573CrossRefGoogle Scholar
  6. 6.
    Kieboom O (2000) Fatigue crack initiation and early crack growth prediction model for the Fibre Metal Laminate GLARE. MSc thesis Delft University of TechnologyGoogle Scholar
  7. 7.
    Spronk SWF (2015) Predicting fatigue crack initiation in fibre metal laminates based on metal fatigue test data. Int J Fatigue 70:428–439CrossRefGoogle Scholar
  8. 8.
    Lekhnitskii SG (1968) Anisotropic plates. Gordon and BreachGoogle Scholar
  9. 9.
    Heywood RB (1962) Designing against fatigue. Chapman & Hall, LondonGoogle Scholar
  10. 10.
    Peterson R (1974) Stress concentration factors. WileyGoogle Scholar
  11. 11.
    Tan SC (1988) Finite-width correction factors for anisotropic plates containing a central opening. J Compos Mater 22:1080–1097CrossRefGoogle Scholar
  12. 12.
    Wu XJ (2002) A higher-order theory for fiber-metal laminates. In: Proceedings of the 23rd international congress on aeronautical sciences, Toronto, CanadaGoogle Scholar
  13. 13.
    Vašek A, Polák V, Kozák J (1997) Fatigue crack initiation in fibre-metal laminate GLARE 2. Mater Sci Eng A234–236:621–624Google Scholar
  14. 14.
    Metallic materials properties development and standardization (MMPDS) handbookGoogle Scholar
  15. 15.
    Handbuch Struktur Berechnung (HSB)Google Scholar
  16. 16.
    Fatigue data book: light structural alloys (1995), ASM International, Materials Park, OH 44073-507-9, USAGoogle Scholar
  17. 17.
    Kaufman J (2008) Properties of aluminium alloys, fatigue data and the effects of temperature, product form, and processing. ASM International, Materials Park, OH 44073-0002, USAGoogle Scholar
  18. 18.
    Alderliesten RC (2009) Fatigue & damage tolerance of hybrid materials & structures—some myths, facts and fairytales. In: Proceedings of the 25th ICAF symposium—RotterdamGoogle Scholar
  19. 19.
    Homan JJ (2009) Handbuch Struktur Berechnung (HSB) 62131-01 issue a: guidelines for the prediction of the fatigue life for Kt values different to available databases, Technical ReportGoogle Scholar
  20. 20.
    Homan JJ, Schra L (2002) Application of aluminium alloy 2024-T3 fatigue life data to GLARE laminates, NLR report NLR-CR-2002-185, National Aerospace Laboratory of the NetherlandsGoogle Scholar
  21. 21.
    Hoang, V, Schwarmann L (1986) Handbuch Struktur Berechnung (HSB) 63111-01 issue D: Zeitfestigkeit 3.1354-T3, Technical ReportGoogle Scholar
  22. 22.
    Chang P-Y, Yeh P-C, Yang J-M (2008) Fatigue crack initiation in hybrid boron/glass/aluminium fiber metal laminates. Mater Sci Eng A 496:273–280CrossRefGoogle Scholar
  23. 23.
    Oldersma O (1994) S-N curve construction for fatigue crack initiation in Fibre-Metal Laminates under flight simulation loading, Report NLR-CR-94427 C. National Aerospace Laboratory NLR, Amsterdam, The NetherlandsGoogle Scholar
  24. 24.
    Schütz W (1979) The prediction of fatigue life in the crack initiation and crack propagation stages. A state of the art survey. Eng Fracture Mech 11:405–421CrossRefGoogle Scholar
  25. 25.
    Beumler Th (2004) Flying GLARE®, A contribution to aircraft certification issues on strength properties in non-damaged and fatigue damaged GLARE® structures. PhD dissertation, Delft University of Technology, Delft, The NetherlandsGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Faculty of Aerospace EngineeringDelft University of TechnologyDelftThe Netherlands

Personalised recommendations